首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
利用A¨KTA UPC-900快速蛋白液相色谱系统(FPLC)从黑曲霉发酵粉中分离纯化出内切β-葡聚糖苷酶。分离纯化后的酶比活力提高了8.1倍,回收率为7.5%。经SDS-PAGE电泳分析该内切酶的相对分子质量为26 400。酶学试验研究表明:该酶的最适反应温度为55℃,最适pH为4.8,Lineweaver-Burk法求得动力学参数,Km和Vmax分别为6.838×10-3mg/mL、2.906×10-2(mL.min)/mg。并确定了FPLC层析缓冲液的离子强度为4.8 mmol/L时分离效果达到最佳。  相似文献   

2.
对黑曲霉Ⅲ与绿色木霉Ⅰ混合发酵所产纤维素酶进行了分离纯化,并对其酶学性质进行了研究。通过硫酸铵分级沉淀、Sephadex G-100 凝胶柱层析,得到 5 个洗脱峰,其中峰 2 含内切葡聚糖苷酶和外切葡聚糖苷酶,且内切葡聚糖苷酶活最高;峰 3 含内切酶、外切酶及 ?-葡萄糖苷酶,酶系较全;峰 5 含内切酶和外切酶;峰 1 和峰 4 没有纤维素酶活性。采用 DEAF FF 弱阴离子交换柱层析对峰 2 进行了分离纯化,从中分离纯化得到一种内切葡聚糖苷酶组分,经 SDS-PAGE 电泳分析,其分子量为 61.5 KD。酶学性质研究结果表明,CMC 酶活在 pH4.0~6.0 的条件下,可保持初始酶活的 70 %~80 %,最适酶反应 pH 为 5.0;温度在 30~50 ℃范围内,酶活较高,最适酶反应温度为 50 ℃,若超过 60 ℃,酶活迅速下降。  相似文献   

3.
对黑曲霉Ⅲ与绿色木霉Ⅰ混合发酵所产纤维素酶进行了分离纯化,并对其酶学性质进行了研究。通过硫酸铵分级沉淀、Sephadex G-100凝胶柱层析,得到5个洗脱峰,其中峰2含内切葡聚糖苷酶和外切葡聚糖苷酶,且内切葡聚糖苷酶活最高;峰3含内切酶、外切酶及β-葡萄糖苷酶,酶系较全面;峰5含内切酶和外切酶;峰1和峰4没有纤维素酶活性。采用DEAF FF弱阴离子交换柱层析对峰2进行分离纯化,从中分离纯化得到1种内切葡聚糖苷酶组分,经SDS-PAGE电泳分析,其分子量为61.5 KD。酶学性质研究结果表明,CMC酶活在pH4.0~6.0的条件下,可保持初始酶活的70%~80%,最适酶反应pH值为5.0;温度在30~50℃范围内,酶活较高,最适酶反应温度为50℃,若超过60℃,酶活迅速下降。  相似文献   

4.
对黑曲霉Ⅲ与绿色木霉Ⅰ混合发酵所产纤维素酶进行了分离纯化,并对其酶学性质进行了研究。通过硫酸铵分级沉淀、Sephadex G-100凝胶柱层析,得到5个洗脱峰,其中峰2含内切葡聚糖苷酶和外切葡聚糖苷酶,且内切葡聚糖苷酶活最高;峰3含内切酶、外切酶及β-葡萄糖苷酶,酶系较全面;峰5含内切酶和外切酶;峰1和峰4没有纤维素酶活性。采用DEAF FF弱阴离子交换柱层析对峰2进行分离纯化,从中分离纯化得到1种内切葡聚糖苷酶组分,经SDS-PAGE电泳分析,其分子量为61.5 KD。酶学性质研究结果表明,CMC酶活在pH4.0~6.0的条件下,可保持初始酶活的70%~80%,最适酶反应pH值为5.0;温度在30~50℃范围内,酶活较高,最适酶反应温度为50℃,若超过60℃,酶活迅速下降。  相似文献   

5.
花生抗真菌蛋白的纯化及活性鉴定   总被引:1,自引:1,他引:1  
利用亲和色谱Affi-gel和葡聚糖凝胶色谱SephadexG-75从花生种子中分离出一种抗真菌蛋白。试验结果表明:此种纯化的抗真菌蛋白对植物致病菌苹果轮纹病菌(Physalosporapiricola)、棉花枯萎病菌(Fusariumoxysporum)、瓜果腐霉病菌(PythiumapHanidermatum)的生长具有明显抑制作用。通过SDS-聚丙烯酰胺凝胶电泳鉴定达到电泳纯,分子质量为34.4kDa。还原和非还原状态下的此抗真菌蛋白均显示单一区带,说明该抗真菌蛋白为单倍体蛋白。  相似文献   

6.
裂褶菌产内切β-1,3-葡聚糖酶的特性研究   总被引:1,自引:1,他引:0  
郑必胜  周萌 《现代食品科技》2011,27(7):731-733,801
对裂褶茵所产内切β-1,3-葡聚糖酶进行有效分离纯化并用电泳法对其纯度进行鉴定,进而研究其酶学特性.结果表明:经过DEAE-Sephadex A-50离子交换层析和Sephadex G-75凝胶过滤分离纯化得到电泳纯分子量约为45 kD的内切β-1,3-葡聚糖酶,其最适pH为5.0,最适温度为45℃;Fe<'2+>、B...  相似文献   

7.
目的:本研究以一株产纤维素酶的解淀粉芽孢杆菌BA-DES4为材料,纯化并研究了其纤维素酶的酶学性质。方法:研究采用硫酸铵分级沉淀及SephadexG-75凝胶过滤层析方式对其所产纤维素酶进行分离纯化,通过聚丙烯酰胺凝胶电泳(SDS-PAGE)确定其分子量,并对纯化后纤维素酶的酶液进行酶学性质研究。结果表明:发酵液中分离纯化获得纤维素酶系组分(内切葡聚糖酶),对纯化的电泳内切葡聚糖酶进行酶活测定,其比活力为51.08 U/mg。发现其分子量为22.4 kDa;初步酶学性质研究表明:该酶的最适反应温度和最适pH分别为65℃和6.0,且在pH5.0~7.0和温度55~65℃下稳定性较高;Mn2+对纤维素酶活力激活作用较为显著,Cu2+的抑制作用最大。结论:该菌株可作为产内切葡聚糖酶的潜在菌株,内切葡聚糖酶可在Mn2+、Fe2+的作用下促进酶活力,同时在高温及酸性环境中发挥作用,能够参与高效降解高温酸性环境中的纤维素,提高生产率,同时将分解成的葡萄糖供发酵使用,具有应用高温大曲发酵酒生产的潜力,为该酶的进一步研究奠定了基础。  相似文献   

8.
探讨来源于康氏木霉诱变菌株SG0026 10L发酵罐发酵液中纤维素酶系的分离纯化过程及其酶学性质。采用硫酸铵盐析、Sephadex G-100凝胶过滤、DEAE-Sepharose FF阴离子交换层析柱和CM-Sepharose FF阳离子交换层析等分离纯化技术,从康氏木霉诱变菌株发酵液中分离纯化得到3个电泳纯的纤维素酶系组分(内切葡聚糖酶、外切葡聚糖酶和β-葡萄糖苷酶)。对纯化的电泳纯内切葡聚糖酶、外切葡聚糖酶和β-葡萄糖苷酶的酶活进行测定,发现3种酶的比活力分别为4.67±0.06 IU/mg、5.16±0.08 IU/mg和12.52±0.12 IU/mg。采用变性聚丙烯酰胺凝胶电泳(SDS-PAGE)确定其分子量,发现其分子量分别为78.1、91.2和83.1k Da。利用Linewaeaver-Burk法对3种酶的动力学参数进行测定,发现3种酶的Km值分别为3.84、6.62和6.21 mg/m L,Vmax值分别为2.29、1.74和2.19 mg/(min·m L)。在此基础上,对3种酶的反应温度和pH进行了研究,发现3种酶的最适反应温度分别为50、50和55℃,最适反应pH均为5.0。  相似文献   

9.
通过硫酸铵沉淀、阴离子交换层析和柱层析从节杆菌(Arthrobacter sp.)粗酶制剂分离纯化得到β-1,3葡聚糖内切酶。经SDS凝胶电泳和柱层析测得纯化酶为单体酶,分子量为32.5kDa;纯化酶N末端的10个氨基酸序列为APGDLLWSDE,在pH5~8之间稳定,最适pH6.5,最适温度55℃,但50℃以上失活很快。纯化酶对昆布4,5,6,7糖及昆布多糖底物的米氏常数分别为0.12,0.11,0.067,0.066mM和0.16mg/mL,也可水解热凝胶和地衣多糖,葡糖苷内切酶H(Streptomyces griseus)不能分解它,证明该酶不含糖基。该酶属于糖基水解酶16族系。  相似文献   

10.
通过反转录PCR(RT-PCR)从黑曲霉(Aspergillus niger)DL08中提取内切葡聚糖酶基因(GeneBank No.KJ437592),PCR测序表明该基因全长999个核苷酸,编码332个氨基酸,预测相对分子质量为36.75 kDa,等电点(pI)为4.38,命名eg1。结构域分析表明,该蛋白包括18个氨基酸构成的信号肽和C末端1个糖基水解酶家族5的催化结构域。重组内切葡聚糖酶蛋白通过Ni-NTA亲和层析柱纯化,酶学性质研究表明,以羧甲基纤维素钠为底物时重组酶最适作用pH为5.0,最适作用温度为45℃。通过薄层层析法检测重组内切葡聚糖酶酶解1%羧甲基纤维素钠的产物,主要为连续寡糖。这些特性为纤维素酶酶解纤维素生产生物化学品和可再生生物燃料提供技术参考。  相似文献   

11.
通过菌体免疫小鼠获得高灵敏的高特异性单克隆抗体,并以此为基础建立一种快速、灵敏的单克隆抗体双抗体夹心法检测玉米细菌性枯萎病菌(Pantoea stewartill subsp.Stewartii)。通过小鼠脾脏融合实验获得3株单克隆抗体(12B4、10B1、11C2),并通过双抗体夹心法筛选配对细胞株,建立双抗体夹心法。最低检测限(LOD)为1.5×104cfu/m L,线性范围在4.57×105~1.11×108cfu/m L。该方法对玉米细菌性枯萎病菌具有很好的特异性,对玉米种子添加回收实验回收率为85.6%~90.2%,相对标准偏差低于5.0%。  相似文献   

12.
Since grapevine ( Vitis spp .) rootstock material is being traded increasingly as disbudded woody material a lack of distinctive morphological features on such material necessitates an alternative and reliable means of identification. Methods described here were developed for rapid and efficient extraction of DNA from woody samples rich in phenolic compounds and polysaccharides, and for subsequent identification of varieties by RAPD PCR. Using these methods, and with the application of only one selected RAPD primer, we were able to differentiate sixteen rootstock varieties, including the seven varieties most commonly used in Germany. Problems commonly encountered with reproducibility of RAPD patterns were avoided by choosing primers with a dinucleotide sequence and a high G/C content that allowed a rather high annealing temperature of 45°C. Methods described here should also be useful for other horticultural crops, especially those with woody tissues rich in phenolic compounds and polysaccharides.  相似文献   

13.
An internet website (http://cpf.jrc.it/smt/) has been produced as a means of dissemination of methods of analysis and supporting spectroscopic information on monomers and additives used for food contact materials (principally packaging). The site which is aimed primarily at assisting food control laboratories in the European Union contains analytical information on monomers, starting substances and additives used in the manufacture of plastics materials. A searchable index is provided giving PM and CAS numbers for each of 255 substances. For each substance a data sheet gives regulatory information, chemical structures, physico-chemical information and background information on the use of the substance in particular plastics, and the food packaging applications. For monomers and starting substances (155 compounds) the infra-red and mass spectra are provided, and for additives (100 compounds); additionally proton NMR are available for about 50% of the entries. Where analytical methods have been developed for determining these substances as residual amounts in plastics or as trace amounts in food simulants these methods are also on the website. All information is provided in portable document file (PDF) format which means that high quality copies can be readily printed, using freely available Adobe Acrobat Reader software. The website will in future be maintained and up-dated by the European Commission's Joint Research Centre (JRC) as new substances are authorized for use by the European Commission (DG-ENTR formerly DGIII). Where analytical laboratories (food control or other) require reference substances these can be obtained free-ofcharge from a reference collection housed at the JRC and maintained in conjunction with this website compendium.  相似文献   

14.
BADGE.2HCl and BFDGE.2HCl were determined in 28 samples of ready-to-drink canned coffee and 18 samples of canned vegetables (10 corn, 5 tomatoes and 3 others), all from the Japanese market. HPLC was used as the principal analytical method and GCMS for confirmation of relevant LC fractions. BADGE.2HCl was found to be present in one canned coffee and five samples of corn, BFDGE.2HCl in four samples of canned tomatoes and in one canned corn. No sample was found which exceeded the 1mg/kg limit of the EU for the BADGE chlorohydrins. However the highest concentration was found for the sum of BFDGE.2HCl and BFDGE.HCl.H2O at a level of 1.5mg/kg. A Beilstein test confirmed that all cans containing foods contaminated with BADGE.2HCl or BFDGE.2HCl had at lest one part coated with a PVC organosol.  相似文献   

15.
A strong science base is required to underpin the planning and decision-making process involved in determining future European community legislation on materials and articles in contact with food. Significant progress has been made in the past 5 years in European funded work in this area, with many developments contributing to a much better understanding of the migration process, and better and simpler approaches to food control. In this paper this progress is reviewed against previously identified work-areas (identified in 1994) and conclusions are reached about future requirements for R&D to support legislation on food contact materials and articles over the next 5 or so years.  相似文献   

16.
A 9% whey protein (WP) isolate solution at pH 7.0 was heat-denatured at 80°C for 30 min. Size-exclusion HPLC showed that native WP formed soluble aggregates after heat-treatment. Additions of CaCl2 (10–40 mM), NaCl (50–400 mM) or glucono-delta-lactone (GDL, 0.4–2.0%, w/v) or hydrolysis by a protease from Bacillus licheniformis caused gelation of the denatured solution at 45°C. Textural parameters, hardness, adhesiveness, and cohesiveness of the gels so formed changed markedly with concentration of added salts or pH by added GDL. Maximum gel hardness occurred at 200 mM NaCl or pH 4.7. Increasing CaCl2 concentration continuously increased gel hardness. Generally, GDL-induced gels were harder than salt-induced gels, and much harder than the protease-induced gel.  相似文献   

17.
The characterization of the aromatic profile of several apricot cultivars with molecular tracers in order to obtain objective data concerning the aromatic quality of this fruit was undertaken using headspace–solid phase microextraction (HS–SPME). Six apricot cultivars were selected according to their organoleptic characteristics: Iranien, Orangered, Goldrich, Hargrand, Rouge du Roussillon and A4025. The aromatic intensity of these varieties measured by HS–SPME–Olfactometry were defined and classified according to the presence and the intensity of grassy, fruity and apricot like notes. In the six varieties, 23 common volatile compounds were identified by HS–SPME–GC–MS. Finally, 10 compounds, ethyl acetate, hexyl acetate, limonene, β-cyclocitral, γ-decalactone, 6-methyl-5-hepten-2-one, linalool, β-ionone, menthone and (E)-hexen-2-al were recognized by HS–SPME–GC–O as responsible of the aromatic notes involved in apricot aroma and considered as molecular tracers of apricot aromatic quality which could be utilized to discriminate apricot varieties.  相似文献   

18.
The advent of the functional barrier concept in food packaging has brought with it a requirement for fast tests of permeation through potential barrier materials. In such tests it would be convenient for both foodstuffs and materials below the functional barrier (sub-barrier materials) to be represented by standard simulants. By means of inverse gas chromatography, liquid paraffin spiked with appropriate permeants was considered as a potential simulant of sub-barrier materials based on polypropylene (PP) or similar polyolefins. Experiments were performed to characterize the kinetics of the permeation of low molecular weight model permeants (octene, toluene and isopropanol) from liquid paraffin, through a surrogate potential functional barrier (25 μm-thick oriented PP) into the food simulants olive oil and 3% (w/v) acetic acid. These permeation results were interpreted in terms of three permeation kinetic models regarding the solubility of a particular model permeant in the post-barrier medium (i.e. the food simulant). The results obtained justify the development and evaluation of liquid sub-barrier simulants that would allow flexible yet rigorous testing of new laminated multilayer packaging materials.  相似文献   

19.
The levels of bisphenol-F-diglycidyl ether (BFDGE) were quantified as part of a European survey on the migration of residues of epoxy resins into oil from canned fish. The contents of BFDGE in cans, lids and fish collected from all 15 Member States of the European Union and Switzerland were analysed in 382 samples. Cans and lids were separately extracted with acetonitrile. The extraction from fish was carried out with hexane followed by re-extraction with acetonitrile. The analysis was performed by reverse phase HPL C with fluorescence detection. BFDGE could be detected in 12% of the fish, 24% of the cans and 18% of the lids. Only 3% of the fish contained BFDGE in concentrations considerably above 1mg/kg. In addition to the presented data, a comparison was made with the levels of BADGE (bisphenol-A-diglycidyl ether)analysed in the same products in the context of a previous study.  相似文献   

20.
The European Commission's, Quality of Life Research Programme, Key Action 1—Health, Food & Nutrition is mission-oriented and aims, amongst other things, at providing a healthy, safe and high-quality food supply leading to reinforced consumer confidence in the safety of European food. Its objectives also include the enhancing of the competitiveness of the European food supply. Key Action 1 is currently supporting a number of different types of European collaborative projects in the area of risk analysis. The objectives of these projects range from the development and validation of prevention strategies including the reduction of consumers risks; development and validation of new modelling approaches; harmonization of risk assessment principles, methodologies, and terminology; standardization of methods and systems used for the safety evaluation of transgenic food; providing of tools for the evaluation of human viral contamination of shellfish and quality control; new methodologies for assessing the potential of unintended effects of genetically modified (genetically modified) foods; development of a risk assessment model for Cryptosporidium parvum related to the food and water industries; to the development of a communication platform for genetically modified organism, producers, retailers, regulatory authorities and consumer groups to improve safety assessment procedures, risk management strategies and risk communication; development and validation of new methods for safety testing of transgenic food; evaluation of the safety and efficacy of iron supplementation in pregnant women; evaluation of the potential cancer-preventing activity of pro- and pre-biotic ('synbiotic') combinations in human volunteers. An overview of these projects is presented here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号