首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
以罗非鱼鳞胶原肽与氯化亚铁盐为原料制备多肽亚铁螯合物,并对其最佳螯合条件及螯合物结构进行探究。以螯合物得率为指标通过单因素和响应面法对螯合条件进行优化;通过扫描电镜、傅里叶红外光谱、X衍射和氨基酸分析等方法对螯合物结构及氨基酸组成进行分析。结果表明,制备螯合物的最佳反应条件为pH 5.30,多肽浓度3.00%,多肽与铁质量比3.2∶1.0,该条件下螯合率为82%,螯合物得率为65.43%;通过氨基酸组成分析表明,氨基酸组成符合胶原多肽的成分特征,螯合后天冬氨酸、谷氨酸、赖氨酸、组氨酸和精氨酸含量增加;扫描电镜、红外光谱以及X衍射等结果表明多肽与亚铁盐以配位键结合成多肽亚铁螯合物。  相似文献   

2.
为了提高螺旋藻的高值化利用,本文以钝顶螺旋藻蛋白肽为实验原料,氯化亚铁为铁源,采用初步优化螺旋藻肽亚铁螯合物的螯合条件,并对螯合物通过分子量测定、氨基酸组成实验、荧光光谱、扫描电镜、量子化学计算进行结构表征。结果表明:初步合适的螯合条件为pH6、肽亚铁质量比6:1、肽液浓度1%、温度60℃、时间40 min,在此条件下螯合物得率为44.13%。螺旋藻蛋白肽与亚铁盐螯合反应后产生了新结构,铁主要与谷氨酸和天冬氨酸的羧基、精氨酸的氨基、赖氨酸的胍基结合,且镶嵌在氨基酸电负性末端形成的空腔中,形成稳定的结构,证明了螯合物的形成。研究结果将为螺旋藻补铁剂的开发提供一定的理论依据。  相似文献   

3.
以乌鸡低聚肽为原料,FeCl2为铁源优化乌鸡肽铁(Ⅱ)螯合物的制备工艺,通过测定铁离子螯合率和多肽铁得率衡量螯合效果,并通过傅里叶红外光谱对螯合产物进行结构分析。优化结果表明,乌鸡肽铁(Ⅱ)螯合物的最佳螯合条件为:乌鸡肽浓度,4%(g/mL);乌鸡肽与亚铁盐的质量比,5∶1,pH值,4。在此条件下乌鸡肽铁(II)螯合物的螯合率为(84.76±0.12)%,螯合物得率为(40.27±0.15)%。红外光谱分析表明,乌鸡肽铁(Ⅱ)螯合物中Fe2+与NH2+以及-COO-形成配位键,说明成功生成了一种新型肽铁螯合物。  相似文献   

4.
以南极磷虾肽(antarctic krill peptides,AKP)和FeCl2·4H2O为原料,以亚铁螯合率和螯合物得率为评价指标,在单因素试验基础上,利用正交试验优化制备出南极磷虾肽-亚铁螯合物(antarctic krill peptide-ferrous chelates,AKP-Fe),并对其理化性质进行分析。结果表明:AKP-Fe的最佳制备条件为:肽铁质量比3∶1,螯合温度40℃,螯合时间40 min,pH值5.5,肽浓度4%,乙醇体积倍数6。在此条件下测得亚铁螯合率为77.25%,螯合物得率为41.03%。傅里叶变换红外光谱分析显示AKP的氨基和羧基与Fe2+发生结合;扫描电镜分析显示AKP与Fe2+螯合后由松疏的片状结构变为颗粒状的聚集体。  相似文献   

5.
采用米蛋白为原料,经酸法脱酰胺、蛋白酶酶解后,以FeCl_2作为铁源制备米蛋白肽亚铁螯合物。结果表明,碱性蛋白酶对米蛋白的水解效果最好,经4 h酶解后蛋白的水解度和蛋白肽得率分别达到23.4%和73.4%。酸法脱酰胺处理能有效提高米蛋白肽的得率。采用0.4 mol/L HCl在95℃处理3 h制备的脱酰胺米蛋白,其水解度和蛋白肽得率分别达到27.1%和92.6%;单因素试验表明反应温度、pH和质量比均对米蛋白肽亚铁螯合物的产品得率和螯合能力有显著影响;米蛋白肽与亚铁盐的最佳螯合工艺条件为:反应温度50℃、蛋白肽与亚铁盐的质量比2:1、pH 6.5;在此条件下其产品得率为65.2%,亚铁螯合能力最大为21.6 mg/g。  相似文献   

6.
乌鸡肽铁(Ⅱ)螫合物的制备及红外光谱鉴定   总被引:1,自引:0,他引:1  
以乌鸡低聚肽为原料,FeCl2为铁源优化乌鸡肽铁(Ⅱ)螯合物的制备工艺,通过测定铁离子螯合率和多肽铁得率衡量螯合效果,并通过傅里叶红外光谱对螯合产物进行结构分析.优化结果表明,乌鸡肽铁(Ⅱ)螯合物的最佳螯合条件为:乌鸡肽浓度,4% (g/mL);乌鸡肽与亚铁盐的质量比,5:1,pH值,4.在此条件下乌鸡肽铁(Ⅱ)螯合物的螯合率为(84.76±0.12)%,螯合物得率为(40.27±0.15)%.红外光谱分析表明,乌鸡肽铁(Ⅱ)螯合物中Fe2+与NH2+以及-COO-形成配位键,说明成功生成了一种新型肽铁螯合物.  相似文献   

7.
以酶法水解冷榨花生粕蛋白质粉制备得到的花生多肽液(3 000 u)为原料,以氯化亚铁为金属螯合剂,在单因素试验基础上,利用Box-Behnken响应面优化技术对多肽-亚铁螯合条件进行优化分析并获得最优螯合工艺参数,即多肽-亚铁质量比为4.31:1(g/g),螯合温度为25.4 C,螯合时间28.5 min和螯合pH 7.5,在此优化条件下,多肽-亚铁螯合率为(85.68±1.27)%(n=3),与模型预测值89.653 1%接近,偏差为4.64%。花生粕蛋白多肽-亚铁螯合物经紫外光谱和红外光谱分析发现,Fe~(2+)与多肽中的NH_2~+以及COO-形成共价配位键并形成稳定的共轭结构,是一种新型有机金属螯合物。  相似文献   

8.
响应面法优化鳕鱼皮胶原蛋白肽螯合铁工艺   总被引:4,自引:0,他引:4  
采用响应面法优化鳕鱼皮胶原蛋白肽与氯化亚铁进行螯合反应的条件,制备小分子肽螯合铁产品。以pH值、小分子肽与FeCl2的质量比和小分子肽液质量分数3因素的5水平进行二次正交旋转组合试验,建立螯合物得率的二次回归方程。结果表明:最佳螯合工艺条件为胶原蛋白肽与氯化亚铁的质量比4:1、小分子肽液质量分数3.5%、pH7.0。在此条件下,螯合物得率为37.31%,与模型的预测值37.46%接近。红外光谱检测结果显示,亚铁离子与小分子肽中的NH2+和COO-有螯合,是一种新型螯合物。  相似文献   

9.
以罗非鱼皮为原料制备胶原蛋白肽(TSGP),胶原蛋白肽与亚铁盐进行螯合反应,对TSGP亚铁螯合物的理化性质及功能特性进行研究。实验优化得出最佳螯合反应条件是m多肽∶mFeCl2·4H2O=500∶1,pH为6.0,反应时间50min,温度35℃。通过荧光光谱、紫外光谱和红外光谱测定发现Fe2+与TSGP的羧基与氨基均可发生配位反应。抗氧化活性测定实验表明,螯合物具有较强的清除DPPH自由基和ABTS+自由基的能力。  相似文献   

10.
分析牡蛎肽氨基酸组成及相对分子质量分布,并以牡蛎肽为原料、硫酸锌为锌源对牡蛎肽锌螯合物的制备工艺进行研究,通过测定锌离子螯合率和螯合物得率衡量螯合效果。结果表明,牡蛎肽相对分子质量小于1000 u的组分高达92.34%,富含谷氨酸和天冬氨酸这两种酸性氨基酸及其酰胺;保证螯合率及得率的最佳螯合条件为:肽与硫酸锌质量比为20∶1,肽浓度为0.06 g/m L,反应温度为50℃,沉淀剂乙醇为5倍反应液体积,p H5.33,反应时间60 min。在此条件下锌离子的螯合率为89.55%±0.23%,螯合物得率为56.64%±0.55%。  相似文献   

11.
从乌鸡中酶解得到乌鸡低聚肽,然后与亚铁螯合制备乌鸡低聚肽亚铁螯合物,螯合率为84.76±0.12%。乌鸡低聚肽亚铁螯合物具有较高的蛋白质含量,高达54.64±1.03%。并且分子量较低,其中分子量小于1000 u的占85.50%。通过扫描电镜、红外光谱对乌鸡低聚肽亚铁螯合物的结构进行分析,结果表明乌鸡低聚肽亚铁螯合物是一种新型的铁螯合物。体外稳定性研究表明乌鸡低聚肽亚铁螯合物具有一定的热稳定性、酸碱稳定性和体外消化稳定性。通过反相高效液相色谱对乌鸡低聚肽亚铁螯合物进行分离纯化,选择一个主要的组分进行收集,然后利用质谱仪进行质谱分析。从乌鸡低聚肽亚铁螯合物的主要组分中鉴定出一个五肽,氨基酸序列为Thr-Ser-Gly-Met-Pro。乌鸡低聚肽亚铁螯合物可作为一种铁补充剂用于食品添加剂、营养物及医药制品中。  相似文献   

12.
为探究辣木籽粕多肽亚铁螯合物的制备工艺及其结构特性。本实验以辣木籽粕多肽和氯化亚铁为原料制备多肽亚铁螯合物,同时以亚铁螯合率为指标对辣木籽粕多肽-亚铁螯合物的制备条件进行优化,得到了最佳螯合反应条件:肽铁质量比为4.1:1,多肽浓度为7.9 mg/mL,pH=4.70,反应温度为40 ℃,反应时间为20 min,在此条件下亚铁离子螯合率为(88.27±1.49)%。紫外、红外、荧光光谱以及扫描电镜和能谱分析等方法对螯合物进行结构分析表明,亚铁离子能够与多肽氨基酸上C=O 、N-H、—COO-等官能团结合生成多肽亚铁螯合物,表面疏水性与氨基酸组成分析表明极性氨基酸能够在螯合反应中起到重要作用。  相似文献   

13.
带鱼蛋白亚铁螯合物的制备及性质比较。以带鱼鱼糜为原料,酶解后根据酶解液体积加入不同量的FeCl_2溶液进行螯合,制备出不同比例(1%,2%,3%和4%)带鱼蛋白亚铁螯合物(Fe-HPH),测定螯合物的螯合率、溶解度、吸湿性和热变性温度等。2%Fe-HPH螯合率最高;1%,2%,3%和4%合物分别在pH为4 5,6和7时达到最大溶解度;在相对湿度为43%和81%的环境中,吸湿性均为4%Fe-H PH3%Fe-HPH2%Fe-H PH1%Fe-H PH:4种Fe-H PH热变性温度分别为51.3℃,62.4℃,68℃和73.5℃,即随着Fe~(2+)加入量的增多而升高:紫外全波段扫描和红外光谱验证了螯合前后结构发生变化。螯合时加入Fe~(2+)量不同,得到的螯合物性质也备有差异。  相似文献   

14.
以花椒籽蛋白为肽源,FeCl_2为铁源制备肽铁螯合物。采用单因素试验和正交试验,以花椒籽蛋白水解肽与铁的螯合率为指标,确定了最佳螯合工艺条件:多肽溶液质量浓度为30 mg/mL,多肽和Fe Cl2的质量比为2.5∶1,pH值为6,螯合温度40℃,螯合时间45 min,此条件下测得的螯合率为96.84%,肽-铁螯合物得率为8.54%。对螯合铁进行紫外光谱、荧光光谱、傅里叶红外光谱及电镜扫描,观察表明:花椒籽蛋白多肽与FeCl_2发生了螯合反应,且所得肽铁螯合物是不同于多肽的一种新物质。对肽铁螯合物进行氨基酸组分分析,其总氨基酸含量为62.71%,必需氨基酸为16.41%,且赖氨酸为第一限制氨基酸。  相似文献   

15.
研究超声波辅助条件下花生肽亚铁螯合物的制备工艺及其结构特性。方法 采用超声波辅助双酶酶解,考察肽铁质量比、pH、螯合温度和时间对螯合率的影响,并采用紫外、红外、荧光光谱及扫描电镜分析花生肽螯合前后空间结构及表观形态变化。结果 超声条件下碱性酶与风味酶复配能显著提高花生肽的亚铁离子螯合率;得到螯合率最佳的反应条件为肽铁质量比3.2:1,pH为7.9,温度38 ℃,时间30 min,亚铁螯合率可达67.5%;光谱分析表明,花生肽段所含的氨基与羧基参与螯合反应,使其空间结构发生改变;扫描电镜结果显示花生肽由平滑的片状结构转变为密集的球状结构。结论 得到了花生肽亚铁螯合物的最优制备工艺并确定其螯合位点,本研究不仅能提高花生粕的经济价值,还有利于促进新型铁制剂的开发。  相似文献   

16.
以桃仁蛋白酶解分离所得多肽和氯化亚铁为原料,研究不同品种多肽、铁盐和不同分子质量多肽组分对螯合率的影响,以及对多肽螯合亚铁(PKP3-Fe)的结构表征和体外模拟消化的影响。研究结果表明,桃仁多肽与亚铁离子的螯合率显著高于(P<0.05)大豆多肽、玉米多肽和鱼胶原蛋白肽,氯化亚铁和小分子质量桃仁多肽具有更高的螯合率。桃仁多肽与亚铁离子螯合前、后的紫外光谱和荧光光谱图对比显示,螯合后紫外吸收峰位置、峰值均发生迁移,内源荧光强度明显减弱,有螯合物形成;傅里叶红外光谱分析表明,亚铁离子与桃仁多肽中的-COO-、N-H、C-N、O-H形成配位键;扫描电镜图显示,桃仁多肽螯合后微观结构发生明显改变,有光滑球状颗粒生成。在模拟胃部消化过程中,PKP3-Fe的铁离子释放率显著低于硫酸亚铁片和乳酸亚铁片(P<0.05),避免了大量氢氧化铁沉淀的生成,进入模拟肠液后,PKP3-Fe仍有相当部分成分在肠道中以离子态或与多肽以螯合物的状态存在,能更好地被人体吸收利用。  相似文献   

17.
以玉米低聚肽和氯化亚铁为原料制备玉米低聚肽螯合铁(II),以得率和螯合率评价螯合效果,通过单因素实验、响应面中心组合设计和验证实验确定最佳工艺。通过高效液相色谱仪(HPLC)测定玉米低聚肽螯合铁(II)的氨基酸组成,并通过傅里叶变换红外光谱(FTIR)和扫描电镜(SEM)对玉米低聚肽螯合铁(II)的结构进行表征。结果表明,玉米低聚肽螯合铁(II)的最佳制备工艺为肽盐比5:1,pH7.0,螯合时间35 min,螯合温度65 ℃。此条件下,玉米低聚肽螯合铁(II)的得率为46.59%±1.69%,铁(II)的螯合率为51.75%±2.10%。玉米低聚肽螯合铁(II)中必需氨基酸含量占比25.58%,相对分子质量小于1000 u的组分占比高达89.77%。FTIR结果表明,铁(II)与玉米低聚肽末端羧基或氨基中的氮原子、氧原子形成配位键,从而形成螯合物;SEM结果显示,螯合后分子发生聚集,圆球状结构消失,说明成功生成了一种新型玉米低聚肽铁螯合物。  相似文献   

18.
乌鸡低聚肽亚铁螯合物的分离纯化与结构鉴定   总被引:1,自引:1,他引:0       下载免费PDF全文
从乌鸡中酶解得到乌鸡低聚肽,然后与亚铁螯合制备乌鸡低聚肽亚铁螯合物,螯合率为84.76±0.12%。乌鸡低聚肽亚铁螯合物具有较高的蛋白质含量,高达54.64±1.03%。并且分子量较低,其中分子量小于1000 u的占85.50%。通过扫描电镜、红外光谱对乌鸡低聚肽亚铁螯合物的结构进行分析,结果表明乌鸡低聚肽亚铁螯合物是一种新型的铁螯合物。体外稳定性研究表明乌鸡低聚肽亚铁螯合物具有一定的热稳定性、酸碱稳定性和体外消化稳定性。通过反相高效液相色谱对乌鸡低聚肽亚铁螯合物进行分离纯化,选择一个主要的组分进行收集,然后利用质谱仪进行质谱分析。从乌鸡低聚肽亚铁螯合物的主要组分中鉴定出一个五肽,氨基酸序列为Thr-Ser-Gly-Met-Pro。乌鸡低聚肽亚铁螯合物可作为一种铁补充剂用于食品添加剂、营养物及医药制品中。  相似文献   

19.
为提高珍珠的利用率,生产易被人体高效吸收利用的补钙剂。以珍珠粉为原料制备珍珠肽,并对其进行钙螯合处理。以螯合物得率和螯合物中钙含量为考察指标,确定珍珠肽螯合钙的最佳制备方法。采用紫外-可见吸收光谱分析(UV-vis)、傅里叶红外光谱分析(FTIR)、圆二色谱分析(CD)、X射线衍射分析(XRD)、差示扫描量热分析(DSC)和扫描电镜分析(SEM)等比较螯合前后的变化。结果表明:珍珠粉经过丙酸酸解、重复离心除杂后得到珍珠蛋白。使用地衣芽孢杆菌蛋白酶(Bacillus licheniformis proteinase, BLP)对珍珠蛋白进行酶解得到珍珠肽,最终珍珠肽螯合钙得率为27.24%±1.29%,珍珠肽螯合钙中钙含量为48.75%±1.20%。对此条件下制备的珍珠肽和珍珠肽钙螯合物进行结构分析,发现珍珠肽的氨基和羧基都参加了螯合反应,并且螯合物的二级结构由原来的无序结构向有序、紧密的结构转变,螯合物的结晶度大幅度提高并生成结构更加稳定的新物质,而且有明显的分子聚集现象。  相似文献   

20.
该研究将鲢鱼鳞胶原肽与亚铁离子进行螯合,以螯合率为评价指标,通过单因素实验结合响应面分析法,探究胶原肽-铁螯合物的最佳制备条件并对其分子量分布、氨基酸组成和结构进行表征。结果表明:胶原肽-铁螯合物的最佳制备条件为p H值7.5、肽铁质量比5:1、肽液质量分数2.5%、螯合时间40 min、螯合温度35℃,在此条件下,铁的螯合率为92.04%。由分子量分布和氨基酸组成分析可知,胶原肽与Fe2+螯后1 000 u以下的分子量占比下降,胶原肽中存在的谷氨酸、天冬氨酸、丙氨酸、缬氨酸和精氨酸对螯合反应具有重要作用;紫外和红外光谱结果表明,胶原肽中的羧基、氨基和酰胺基等基团参与了螯合反应;X射线衍射图谱也显示鲢鱼鳞胶原肽-铁螯合物呈现出不同于胶原肽的非晶形结构。该研究可望为鲢鱼鳞胶原肽-铁螯合物的制备、工艺优选及结构表征提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号