首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
1064nm分布布拉格反射(DBR)半导体激光器具有窄线宽、输出稳定的特性,在自由空间激光通信用种子光源等方面具有广阔的应用前景。设计了一种单模、窄线宽的1064nm DBR半导体激光器,利用金属有机化合物气相沉积技术生长出InGaAs应变量子阱半导体激光器材料,并制备出腔长为1200μm的脊型波导1064nm DBR半导体激光器。当注入电流为70mA时,室温下该激光器的连续输出功率可达到7mW,3dB光谱线宽为0.12nm。  相似文献   

2.
设计了一种1550 nm波长分布反馈(DFB)激光器芯片,分析了有源区材料和波导结构对芯片参数的影响.分析了影响输出功率和相对强度噪声(RIN)的因素,并进行了实验对比.通过对芯片材料结构和波导结构的优化设计提升了芯片效率、降低了RIN;通过优化腔长与量子阱总增益之间的匹配参量及对光波导的优化设计,提高了芯片注入饱和点;通过提升注入水平提高了芯片输出功率.芯片测试结果显示,25℃时阈值电流为13 mA,斜率效率为0.38 W/A,输出功率为102 mW@300 mA,边模抑制比为51 dB@50 mW,RIN为-160 dB/Hz@300 mA.该芯片具备高输出功率、低RIN、低阈值电流、高斜率效率的特点.  相似文献   

3.
热效应是限制外腔面发射激光器(VECSEL)输出功率和光束质量的主要原因。为了优化VECSEL增益芯片有源区量子阱的设计,降低激光器的热效应,提高斜效率和输出功率,采用光致荧光谱方法,对设计波长980nm VECSEL自发辐射谱的热特性进行了实验研究。取得了不同热沉温度下边发射和面发射谱随温度的变化数据。结果表明,反映有源区量子阱自身特性的边发射谱峰值波长随温度升高的红移速率是0.5nm/K,而受到增益芯片多层结构调制的面发射谱峰值波长随温度升高的红移速率只有0.1nm/K;由于受到VECSEL增益芯片中微腔的限制,面发射谱分离为多个模式,分别与微腔的腔模对应。可见对量子阱的发射波长及微腔腔长做预偏置优化处理,可以显著改善激光器的输出性能。  相似文献   

4.
采用多量子阱掩埋条形(BRS)增益芯片和拉锥光纤布拉格光栅(FBG),制作了1.5μm波段FBG外腔式窄线宽半导体激光器。封装后器件实现了全电流范围内稳定单模窄线宽激光输出。30~250 m A驱动电流下线宽小于15.48 k Hz,实测最小线宽为6.42 k Hz,频率稳定度为7.2×10-8/s,边模抑制比大于40 d B,最大出纤功率大于10 m W。这种集成窄线宽激光器性能优异,且制作成本低,工艺简单,适于批量生产,可应用于400 Gb/s相干通信系统的发射源与接收机本振源。  相似文献   

5.
设计了一种高效的1060 nm大功率半导体激光器,该激光器包含有源层、波导层和光限制层。其中有源层采用InGaAs/GaAs量子阱(QW)结构,将该层控制在临界厚度范围内,提高腔内量子效率;波导层采用非故意掺杂GaAs材料非对称大光学腔结构,减小空腔损耗;光限制层采用掺杂的Al0.25Ga0.75As材料形成线性的过渡,以减小串联电阻。应用MOCVD对器件结构进行优化,外延,制作和封装测试,获得功率效率为47.4%的1060 nm半导体激光器。实验结果表明,腔内量子效率达到98.57%,腔损仅为0.273 cm-1。在室温下,QCW脉冲条件下制备的器件具有4 mm腔长和100μm条宽的器件,效率达到47.4%,峰值波长为1059.4 nm。  相似文献   

6.
以InGaAs多量子阱为有源区材料,以对抽运光透明的AlGaAs/AlAs为后端分布布拉格反射镜材料,采用后端抽运方式,在腔内插入标准具作为滤波元件,通过腔内倍频,获得小型化可调谐的光抽运外腔面发射绿光激光器。作为滤波元件,标准具可压窄基频光的光谱半峰全宽。为了阻止倍频光返回到增益芯片,标准具镀有倍频光高反膜。激光器的基频光调谐范围超过10 nm,倍频绿光在中心波长559 nm处的调谐范围为4 nm,光谱半峰全宽为1.0 nm,最大输出功率为65 mW。  相似文献   

7.
半导体激光器的发射波长随工作电流和温度的改变而变化,从而影响输出激光的有效线宽和波长稳定性,无法满足固体激光器中增益介质对泵浦源波长和线宽的要求。使用自主研发的衍射效率为9.9%的878 nm反射式全息体布拉格光栅(volume Bragg grating,VBG)作为半导体激光器的反射腔镜,可以将激光发射波长锁定在设计的878 nm附近,输出线宽仅为0.3 nm,波长电流漂移系数为0.015 nm/A,温度漂移系数为0.0075 nm/℃。利用波长锁定的半导体激光器作为泵浦源、自主研发的衍射效率为98.71%和94.32%的1 064 nm VBG作为前后腔镜以及掺杂浓度为0.3%的Nd∶ YVO4晶体作为增益介质搭建全固态激光器,经过空间光路的调试,获得中心波长1 064.2 nm、线宽0.29 nm的连续稳定激光输出。  相似文献   

8.
黄芳 《光机电信息》2005,(10):13-14
二极管激光器的核心是埋置在半导体结中间波导内的增益介质.即量子阱。量子阱具有的特定能级使通过二极管激光器的电流在所要求的波长处产生粒子数反转。光波导使光子沿正确的方向运行,一对反射镜构成谐振腔。  相似文献   

9.
采用MOCVD生长了InGaAsP/InGaP/AlGaAs材料系分别限制异质结构(SCH) 的高功率半导体激光器.对于厚度为10nm 的单量子阱,通过计算量子阱增益谱优化了器件的激射波长. 在室温下外延材料的荧光峰值波长为764nm,由于In原子的记忆效应(In carry-over effect)和As/P的替换作用使材料的InGaP/AlGaAs界面不陡峭,通过在InGaP/AlGaAs间长一层5nm的GaAsP大大改善了界面质量. 器件的阈值电流从界面改善前的560mA 减小到改善后的450mA, 斜率效率也从0.61W/A提高到了0.7W/A, 特别是单面最大输出功率已经从370mW 增加到了940mW,发生灾变性光学损伤时的工作电流已经由原来的1100mA 上升为1820mA.  相似文献   

10.
通过采用经过优化的新型大光腔结构,脊形波导980nm单模InGaAs/GaAs/AlGaAs多量子阱半导体激光器在保持大功率光输出的同时获得了较小的垂直发散角.结果表明波导中的光功率密度可以降低,获得了大于400mW、斜率效率0.89W/A的输出光功率,垂直方向远场发散角也降低到23°.  相似文献   

11.
白一鸣  王俊  陈诺夫 《微纳电子技术》2011,48(3):146-149,158
从理论上设计优化了高效率808 nm GaAsP/AlGaAs张应变量子阱激光二极管外延材料的量子阱结构和波导结构参数,并采用低压金属有机气相外延技术实验制备了外延材料.将制作的芯片解理成不同腔长,测试得到外延材料的内损耗系数和内量子效率分别为0.82 cm-1和93.6 %.把腔长为900 μm的单巴条芯片封装在热传...  相似文献   

12.
以光栅外腔半导体激光器的理论知识为基础,对 Littrow 型的外腔半导体激光器的结构进行了说明。根据等效反射系数的概念,推导出外腔反馈作用下阈值增益的公式和线宽压窄公式,并详细地讨论了外腔半导体激光器的线宽压窄机制。同时,对影响 Littrow 型光栅外腔半导体激光器阈值增益和线宽压窄的各种因素进行了分析,发现外腔的反馈相当于增加了端面的反射率,阈值增益变小,在相同的输出功率下,增大受激辐射,抑制自发辐射,从而使线宽减小。  相似文献   

13.
通过采用经过优化的新型大光腔结构,脊形波导980nm单模InGaAs/GaAs/AlGaAs多量子阱半导体激光器在保持大功率光输出的同时获得了较小的垂直发散角.结果表明波导中的光功率密度可以降低,获得了大于400mW、斜率效率0.89W/A的输出光功率,垂直方向远场发散角也降低到23°.  相似文献   

14.
周平  吴永前  张蓉竹 《红外与激光工程》2022,51(4):20210168-1-20210168-8
以光栅外腔半导体激光器的理论知识为基础,对Littman-Metcalf型外腔半导体激光器的工作原理进行了说明,并详细地讨论了外腔半导体激光器的线宽压窄以及模式选择机制,采用严格的耦合理论和光线变换矩阵推导了系统结构参数对光场耦合效率影响的计算公式。同时,对影响Littman-Metcalf外腔激光器输出激光线宽的几个重要因素进行了分析,重点讨论了系统中准直透镜位置失调导致的线宽变化规律。计算结果表明:合理地控制Littman-Metcalf光栅外腔半导体激光器的外腔参数可以将中心波长为785 nm半导体激光器的本征线宽压窄四个数量级,该外腔系统中准直透镜位置失调会影响系统出射光场与经外腔反馈光场之间的耦合效率,进而影响光栅外腔半导体激光器的输出线宽。  相似文献   

15.
940 nm无铝双量子阱列阵半导体激光器   总被引:2,自引:0,他引:2  
万春明  王慧  曲轶 《中国激光》2002,29(12):1061-1063
分析了影响列阵半导体激光器极限输出功率的因素。利用MOCVD研制了无铝双量子阱列阵半导体激光器。无铝列阵激光器的峰值波长为 940 2nm ,半峰宽为 2nm ,连续输出功率为 10W ,斜率效率为 1 0 9W A。  相似文献   

16.
半导体宽谱激光在传感、光谱学等领域有着重要的应用.传统半导体宽谱激光器主要采用宽增益材料和全反射波导,采用简单量子阱结构制备宽谱激光器一直是个难题.作者首次证明了一种基于布拉格反射波导一维光子晶体的新型量子阱宽谱激光器,其结构主要包括In Ga As/Ga As量子阱和上下布拉格反射镜,通过偏离解理实现激光输出.研究发现在偏离角7°时,器件展现宽谱超辐射发光二极管特性,4.4°偏离角时实现了宽光谱激光输出,光谱宽度达到33.7 nm,连续输出功率36 m W.本研究为探索新型量子阱宽谱激光器提出了一种新的技术途径.  相似文献   

17.
报道了一种采用单个增益芯片实现双波长输出的光泵浦垂直外腔面发射半导体激光器(VECSEL)。VECSEL所用的增益芯片发光区由两组不同发光波长的量子阱组成,其中一组发光波长较短的量子阱采用吸收区泵浦的方式,另一组发光波长较长的量子阱采用阱内泵浦方式。在VECSEL工作时,吸收区泵浦的短波长量子阱率先激射,由于发光波长较长的量子阱对短波长量子阱的强度调制效应,此时可以观察到两种波长的光谱峰值强度随时间周期性振荡,采用高灵敏探测器观察到VECSEL此时的输出激光呈现出脉冲输出形式。随着泵浦功率进一步增加,VECSEL的输出激光呈现稳定的双波长输出,激光波长峰位分别位于967.5 nm和969.8 nm。VECSEL双波长稳定输出时的最大激光功率可以达到560 mW,光斑在正交方向呈现对称高斯形貌,正交方向发散角分别为6.68°和6.87°。  相似文献   

18.
对隧道再生多有源区内腔接触式垂直腔面发射激光器(VCSEL)材料特性进行了实验研究,得到了VCSEL外延片量子阱增益谱峰值波长、谐振腔谐振波长、DBR反射谱中心波长及材料的生长厚度偏差等重要信息。如果谐振腔谐振波长比增益谱峰值波长长20nm以上,阈值条件很难得到满足,器件很难实现激射。符合模拟参数生长的双有源区隧道再生VCSEL实现了室温激射。氧化孔径8.3μm器件,在11mA注入电流下,获得5mW的输出功率,斜率效率0.702mW/mA,激射波长970nm。  相似文献   

19.
高饱和电流14xx nm应变量子阱激光器的研制   总被引:1,自引:1,他引:1  
报道了14xx nm应变量子阱(SQW)激光器管芯的研制成果。通过金属有机化学气相沉积(MOCVD)生长工艺生长14xx nm AlGaInAs/AlInAs/InP应变量子阱外延片,采用带有锥形增益区的脊型波导结构制作激光器管芯。生长好的外延片按照双沟脊型波导激光器制备工艺进行光刻、腐蚀,制作P面电极(溅射 TiPtAu)、减薄、制作N面电极(蒸发AuGeNi),然后将试验片解理成Bar;为获得高的单面输出功率,用电子回旋共振等离子体化学气相沉积(ECR)进行腔面镀膜,HR=90%,AR=5%;解理成的管芯P面朝下烧结到铜热沉上,TO3封装后在激光器综合测试仪进行测试。管芯功率达到440 mW以上,饱和电流3 A以上,峰值波长1430 nm,远场发散角为40°×14°。  相似文献   

20.
高功率980nm非对称宽波导半导体激光器设计   总被引:1,自引:0,他引:1       下载免费PDF全文
设计了980nm非对称宽波导InGaAs/InGaAsP量子阱激光器,并在结构中插入电流阻挡层,有效地阻止载流子的泄露。用LASTIP软件对980nm非对称宽波导量子阱激光器进行理论模拟,与传统的980nm对称宽波导量子阱激光器相比,非对称宽波导量子阱激光器波导和量子阱之间有更小的能带差,非对称宽波导结构具有更低的阈值电流,更高的斜效率以及更低的阻抗,所以带有电流阻挡层的980nm非对称宽波导InGaAs/InGaAsP量子阱激光器有更高的光电转换效率和输出功率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号