首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
采用0.18μm 1.8V CMOS工艺设计一种增益提高型电荷泵电路,利用增益提高技术和折叠式共源共栅电路实现充放电电流的匹配.该电荷泵结构可以很大程度地减小沟道长度调制效应的影响,使充放电电流在宽输出电压范围内实现精确匹配,同时具有结构简单的优点.仿真结果表明,电源电压1.8V时,电荷泵电流为600μA,在0.3~1.6V输出范围内电流失配为0.6μA,功耗为3mW.  相似文献   

2.
<正> LM4926是美国国家半导体公司推出的一种超低噪声、固定增益、在 THD≤1%时,输出80mW 的立体声耳机放大器。它具有工作电压低(最低1.6V)、封装尺寸小、外围元件少、输出音质高等特点,是 MP3较合适的耳机放大器。它最大的特点是内部有个电荷泵电路,那么电荷泵电路对耳机放大器有什么作呢?这是一个电压反转型电荷泵电路,它将 Vdd 电源正电压转换成负电压-Vdd,使它产生一个地的参考电压,则放大器工作于±Vdd 电源。其好处是,这使得输出以地为参考电压,因此可以消除输出耦合电容,而用两个小电容(电荷泵电路的泵电容及输出电容)代替大的输出耦合电解电容(一般常用220μF);其次是没有输出耦合电容后可改善低频响应;输出电压的动态范围几乎增加了一倍,这对低电  相似文献   

3.
《电子与封装》2017,(7):21-24
针对现有电荷泵存在的体效应、电荷回流等问题,提出一种高增益低纹波的电荷泵电路。该电荷泵采用两路互补的结构,减小了输出电压纹波;使用电位选择电路消除体效应,并使用两相低电平不交叠时钟避免电荷回流,提高了电压增益和转换效率。Hspice仿真结果表明,在级数同为5级和电流负载相同的情况下,文中提出的电荷泵相比现有电荷泵具有更高的输出电压和更小的电压纹波。  相似文献   

4.
覃仕成  谢亮  金湘亮 《微电子学》2016,46(3):344-347
设计了一款应用于MEMS麦克风的电荷泵电路。在动态的电荷传输开关型电荷泵中,增加了时钟电平倍增电路和负反馈电路,使得电荷泵在工艺偏差、温度以及电源电压变化时能够输出稳定的高压。电路基于0.3 μm CMOS工艺实现,Spectre仿真结果表明,在1.6~3.6 V电源电压范围及所有工艺角下,电荷泵能够输出偏差在±5%以内的14 V高压,与相同条件下的传统静态电荷传输型电荷泵相比,升压单元减少了33%,有效提高了效率,节省了面积。  相似文献   

5.
采用TSMC 0.18 μm混合CMOS工艺,设计了一种应用在GNSS接收机中低杂散锁相环(PLL)的宽动态范围低失配电荷泵。分析了电荷泵非理想因素和压控振荡器(VCO)调谐增益对参考杂散的影响,发现提高电荷泵电流匹配精度和减小VCO调谐增益均可有效抑制锁相环的参考杂散。采用加负反馈的源极开关型电荷泵,以实现电荷泵充放电电流的精确匹配。利用电荷泵输出电压来控制运算放大器的不同输出支路,以拓宽电荷泵的输出电压动态范围,从而降低PLL输出频率范围对VCO调谐增益的要求。仿真结果表明,当电源电压为1.8 V、电荷泵电流为100 μA时,可以实现充放电电流精确匹配,输出电压范围达到0.02~1.78 V,参考杂散为-66.3 dBc。  相似文献   

6.
采用有限状态机控制的升降压双通路高效率电荷泵   总被引:1,自引:1,他引:0  
针对诸如系统芯片中模拟和数字模块需工作在不同电源电压下的要求,提出一种可同时提供双路输出且具有多种增益模式的电荷泵,它仅利用一组开关电容阵列,根据输入电压与负载电流的变化自动为双通路选择合适的增益对,从而在提供稳定的输出电压同时使电荷泵具有较高的转换效率。专门引入增益跳变技术,改善了增益过渡的平滑性,进一步提高了转换效率。整个调制过程采用数字状态机控制,电路结构简单,响应速度快。芯片采用TSMC 0.35μm混合信号CMOS工艺设计并制造,仿真与测试结果显示设计目标均已实现,能够同时提供稳定的1.8 V和5.0 V的双路输出,动态响应迅速,转换效率比传统多增益模式电荷泵提高了10%以上。  相似文献   

7.
杜占坤  郭慧民  陈杰   《电子器件》2007,30(6):2032-2035
为提高锁相环中自校准电荷泵电路的稳定性,提出了一种改进型宽摆幅自校准CMOS电荷泵电路.该电路通过引入宽摆幅自校准反馈回路,使电荷泵在输出电压变化范围较大时,UP/DOWN两个开关电流完全匹配,而且该电路不需要专门的频率补偿即可确保绝对稳定.该电荷泵采用0.25μm CMOS混合信号工艺实现.当供电电压2.5V,电荷泵输出节点电压在0.3~2.2V范围内变化时,UP和DOWN电流差值小于2%.  相似文献   

8.
采用UMC 0.18 μm 1.8 V/3.3 V CMOS工艺设计并流片验证了一个应用于生医刺激器的新型负电压型电荷泵电路.介绍了几种典型的负电压型电荷泵电路,比较其优缺点,在此基础上设计了一个新型4级交叉耦合型负电压电荷泵.和现有的结构相比,该电路在启动过程和工作过程中都不存在过压问题,器件任意两端口之间的电压均小于电源电压VDD,同时降低了MOS器件衬底效应、反向漏电流对电荷泵效率的影响.电荷泵的电容采用MIM电容,升压电容为50 pF,输出电容为100 pF.芯片面积为2.3 mm×1.3 mm,测试结果表明负电压型电荷泵电路输出电压为-10.3 V,系统最高效率为56%.当输出电流为3.5 mA时,输出电容为100 pF时,纹波电压为150 mV.  相似文献   

9.
锁相环频率综合器中高性能电荷泵设计   总被引:1,自引:1,他引:0  
本文基于0.18μm CMOS工艺设计并实现了一种新的高性能电荷泵电路。采用宽输入范围的轨到轨运算放大器和自偏置共源共栅电流镜技术提高了电荷泵在宽输出电压范围内的电流匹配精度;同时,提出通过增加预充电电流源技术来提高电荷泵的初始充电电流,以缩短CPPLLs的建立时间。测试结果表明电荷泵在0.4~1.7V输出电压范围内失配电流小于0.4%,充电电流为100μA,预充电电流为70μA。在1.8V电源电压下,电荷泵电路锁定时的平均功耗为0.9mW。  相似文献   

10.
设计了一种应用于EEPROM的片内电荷泵电路系统。该电路基于Dickson电荷泵结构,通过使用稳定的参考电压驱动压控振荡电路,从而产生了占空比小于50%的精确时钟,提高了电荷泵升压速度;通过使用调压电路,限制并稳定了输出电压。HSPICE仿真结果显示:在5 V电源电压下,时钟频率高达2.085 MHz。电荷泵仅需要56.256μs就可以输出15.962 V的高压。电荷泵的电压上升时间快,性能优越。  相似文献   

11.
A high efficiency charge pump circuit is designed and realized. The charge transfer switch is biased by the additional capacitor and transistor to eliminate the influence of the threshold voltage. Moreover, the bulk of the switch transistor is dynamically biased so that the threshold voltage gets lower when it is turned on during charge transfer and gets higher when it is turned off. As a result, the efficiency of the charge pump circuit can be improved. A test chip has been implemented in a 0.18 μm 3.3 V standard CMOS process. The measured output voltage of the eight-pumping-stage charge pump is 9.8 V with each pumping capacitor of 0.5 pF at an output current of 0.18 μA, when the clock frequency is 780 kHz and the supply voltage is 2 V. The charge pump and the clock driver consume a total current of 2.9 μA from the power supply. This circuit is suitable for low power applications.  相似文献   

12.
In this article a new charge pump circuit is presented, which is feasible for implementation with the standard twin-well CMOS process. The proposed charge pump employs PMOS-switching dual charge-transfer paths and a simple two-phase clock. Since charge transfer switches are fully turned ON during each half of the clock cycle, they transfer charges completely from the present stage to the next stage without suffering threshold voltage drop. During one clock cycle, the pump transfers charges twice through two pumping paths which are operating alternately. Test chips have been fabricated in a 0.35-μm twin-well CMOS process. The output voltage of a 4-stage charge pump with each pumping capacitor of 7.36 pF measures 6.7 V under a 1.5 V power supply and 20 MHz clock frequency. It can supply a maximum load current of about 180 μA. Although the proposed circuit exhibits somewhat inferior performances against triple-well charge pumps using additional mask and process steps, it shows at least 60% higher voltage gain at V DD = 0.9 V, approximately 10% higher peak power efficiency at V DD = 1.5 V, much larger output current drivability and faster initial output rising than traditional twin-well charge pumps. This new pumping efficient circuit is suitable for design applications with a low-cost standard twin-well CMOS process.  相似文献   

13.
A new charge pump circuit with consideration of gate-oxide reliability is designed with two pumping branches in this paper. The charge transfer switches in the new proposed circuit can be completely turned on and turned off, so its pumping efficiency is higher than that of the traditional designs. Moreover, the maximum gate-source and gate-drain voltages of all devices in the proposed charge pump circuit do not exceed the normal operating power supply voltage (VDD). Two test chips have been implemented in a 0.35-/spl mu/m 3.3-V CMOS process to verify the new proposed charge pump circuit. The measured output voltage of the new proposed four-stage charge pump circuit with each pumping capacitor of 2 pF to drive the capacitive output load is around 8.8 V under 3.3-V power supply (VDD = 3.3 V), which is limited by the junction breakdown voltage of the parasitic pn-junction in the given process. The new proposed circuit is suitable for applications in low-voltage CMOS processes because of its high pumping efficiency and no overstress across the gate oxide of devices.  相似文献   

14.
MEMS麦克风需要一个高于10 V的偏置电压才能工作,这个高电压一般由内部电荷泵电路产生.在传统Dickson电荷泵结构的基础上,提出一种改进的电荷泵结构.它首先将非重叠时钟的幅度加倍,然后用幅度加倍的时钟作为电荷泵的驱动时钟,取得了明显的升压效果.Hspice仿真结果表明,电源电压为1.4V时,6级二极管-电容升压单元就可以实现10.7674 V的输出电压.与传统的Dickson升压电路相比,改进型电荷泵的升压单元减少了4级,且其核心部分的面积减小了21%,功耗降低了40%(参考SMIC 0.35 μm CMOS工艺).  相似文献   

15.
设计了一种用于AMOLED驱动芯片的多模式高效低纹波电荷泵。该电荷泵通过模式选择,使输出电压可配置,实现多模式功能。针对电压建立和模式切换过程中电荷损耗的问题,利用初始化电路和电压检测电路来保证电荷泵中电荷单向传输,同时利用衬底选择开关来解决电荷泵的体效应问题,提高了电压转换效率。采用双边对称的泵电路结构,减小了输出电压纹波。采用UMC 80 nm CMOS工艺进行仿真。结果表明,负载电流为4 mA时,输出电压为8.4~17 V,四种工作模式下电压转换效率均在90%以上,电压纹波均小于1 mV。  相似文献   

16.
由于存在逆向电流,利用电流传输开关特性的改进型的电压泵(NCP-1)的电压增益被大大减弱.本论文提供了一个新的方法.通过使用双阈值电压CMOS代替单阈值电压CMOS,不但消除了逆向电流,而且对低电压有很好的放大增益.PSPICE模拟结果,当电源电压为0.5V时,6级电压泵可使输出电压放大到2.68V.  相似文献   

17.
提出了一种新颖的双模式高集成开关电容电荷泵。该电荷泵集成高频振荡器、电平移位、逻辑驱动以及4个功率MOSFET开关。与传统电荷泵相比,该电路可以工作在单电源以及双电源两种模式。单电源模式下,输出电压为-VCC;双电源模式下,输出电压为-3×VCC。电路采用0.35μm BCD工艺实现。测试结果表明:室温时,单电源模式和双电源模式下电荷泵输出电流分别为36 mA和80 mA时输出电压分别为-3.07 V和-12.10 V。在-55℃到125℃温度范围内,单电源模式和双电源模式下电荷泵输出电流分别为24 mA和50 mA时输出电压分别低于-3.06 V和-12.35 V。该电荷泵在两种模式下工作特性良好,已应用于相关工程项目。  相似文献   

18.
MOS charge pumps for low-voltage operation   总被引:1,自引:0,他引:1  
New MOS charge pumps utilizing the charge transfer switches (CTSs) to direct charge flow and generate boosted output voltage are described. Using the internal boosted voltage to backward control the CTS of a previous stage yields charge pumps that are suitable for low-voltage operation. Applying dynamic control to the CTSs can eliminate the reverse charge sharing phenomenon and further improve the voltage pumping gain. The limitation imposed by the diode-configured output stage can be mitigated by pumping it with a clock of enhanced voltage amplitude. Using the new circuit techniques, a 1.2-V-to-3.5-V charge pump and a 2-V-to-16-V charge pump are demonstrated  相似文献   

19.
针对传统四相时钟发生电路产生的时钟波形信号易发生交叠、驱动电荷泵易发生漏电等问题,提出了一种占空比可调四相时钟发生电路。电路在每两相可能出现交叠的时钟信号之间都增加了延时单元模块,通过控制延时时间对输出时钟信号的占空比进行调节,避免了时钟相位的交叠。对延时单元进行了改进,在外接偏置电压条件下,实现了延时可控。基于55 nm CMOS工艺的仿真结果表明,在10~50 MHz时钟输入频率范围内,该四相时钟发生电路可以稳定输出四相不交叠时钟信号,并能在1.2 V电压下驱动十级电荷泵高效泵入11.2 V。流片测试结果表明,该四相时钟发生电路能够产生不相交叠的四相时钟波形,时钟输出相位满足电荷泵驱动需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号