首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
采用分子束外延方法在GaAs(100)衬底上生长GaSb体材料,以此GaSb为缓冲层生长了不同InAs厚度的InAs/GaSb超晶格,其10K光致发光谱峰值波长在2.0~2.6 μm.高分辨透射电子显微镜观察证实超晶格界面清晰,周期完整.  相似文献   

2.
采用分子束外延方法在GaAs(100)衬底上生长GaSb体材料,以此GaSb为缓冲层生长了不同InAs厚度的InAs/GaSb超晶格,其10 K光荧光谱峰值波长在2~2.6 μm.高分辨透射电子显微镜观察证实超晶格界面清晰,周期完整.InAs/GaSb超晶格材料的成功生长是制备这类红外探测器件重要的第一步.  相似文献   

3.
报道了InAs/GaSb超晶格中波材料的分子束外廷生长技术研究.通过改变GaSb衬底上分子束外延InAs/GaSb超晶格材料的衬底温度,以及界面的优化等,改善超晶格材料的表面形貌和晶格失配,获得了晶格失配△a/a=1.5×10-4,原子级平整表面的InAs/GaSb超晶格材料,材料77 K截止波长为4.87 μm.  相似文献   

4.
高质量的InAs/GaSbⅡ类超晶格(SLs)材料生长在晶格匹配的GaSb衬底上,由于GaSb衬底具有良好的导电性,传统的霍尔测量难以直接得到外延超晶格材料的载流子浓度等电学参数,所以,如何准确地获得InAs/GaSb超晶格外延材料中的载流子浓度成为了研究人员关注的焦点之一.主要介绍了InAs/GaSbⅡ类超晶格背景载流子浓度测量的四种典型的方法:低温霍尔技术;变磁场霍尔技术以及迁移率谱拟合;衬底去除技术;电容-电压技术.并给出了各种方法的基本原理,评价了每种方法的优缺点.  相似文献   

5.
高质量的InAs/GaSbⅡ类超晶格(SLs)材料生长在晶格匹配的GaSb衬底上,由于GaSb衬底具有良好的导电性,传统的霍尔测量难以直接得到外延超晶格材料的载流子浓度等电学参数,所以,如何准确地获得InAs/GaSb超晶格外延材料中的载流子浓度成为了研究人员关注的焦点之一。主要介绍了InAs/GaSbⅡ类超晶格背景载流子浓度测量的四种典型的方法:低温霍尔技术;变磁场霍尔技术以及迁移率谱拟合;衬底去除技术;电容-电压技术。并给出了各种方法的基本原理,评价了每种方法的优缺点。  相似文献   

6.
为了提高InAs/GaSb超晶格探测器性能和工作温度,研究了超晶格吸收层载流子输运性能。利用分子束外延在半绝缘GaAs衬底上生长InAs/GaSb超晶格材料,用霍尔测试表征材料电学性能,研究了不同条件,包括退火、束流比和在超晶格不同材料层的掺杂对超晶格电学性能的影响。  相似文献   

7.
邢伟荣  刘铭  郭喜  周朋  周立庆 《红外》2017,38(12):17-20
InAs/GaSb II类超晶格由于具有独特的能带结构和良好的材料性能被认为是第三代红外探测器的首选,近年来被广泛研究,并取得快速发展。分子束外延能够精确控制材料界面与周期厚度,是超晶格材料生长的主流手段。利用分子束外延技术在GaSb衬底上分别生长了中波、长波超晶格材料,并对所生长的超晶格材料的性能进行了全面表征,最后用制备的面阵器件验证了该材料的性能。}  相似文献   

8.
用金属有机物化学气相淀积法(MOCVD)在GaSb衬底上生长InAs/GaSb超晶格,探索了最佳的生长厚度,优化了各种生长参数,并且分析了源流量控制的重要性.得到的超晶格材料的光致发光(PL)谱、X射线双晶衍射图以及表面形貌图表明,生长的超晶格材料可以响应10μm的长波,且具有良好的表面形貌和外延层质量.  相似文献   

9.
InAs/GaSb II类超晶格中波红外探测器   总被引:1,自引:0,他引:1       下载免费PDF全文
InAs/GaSb II类超晶格探测器是近年来国际上发展迅速的红外探测器,其优越性表现在高量子效率和高工作温度,以及良好的均匀性和较低的暗电流密度,因而受到广泛关注。报道了InAs/GaSb超晶格中波材料的分子束外延生长和器件性能。通过优化分子束外延生长工艺,包括生长温度和快门顺序等,获得了具原子级表面平整的中波InAs/GaSb超晶格材料,X射线衍射零级峰的双晶半峰宽为28.8,晶格失配a/a=1.510-4。研制的p?鄄i?鄄n单元探测器在77 K温度下电流响应率达到0.48 A/W,黑体探测率为4.541010 cmHz1/2W,峰值探测率达到1.751011 cmHz1/2W。  相似文献   

10.
本文系统地介绍了MBE外延生长InAs/GaSb Ⅱ类超晶格材料的界面控制方法,主要包括生长中断法、表面迁移增强法、Ⅴ族元素浸润法和体材料生长法。短波(中波)InAs/GaSb超晶格材料界面采用混合(mixed-like)界面,控制方法以生长中断法为主;长波(甚长波)超晶格材料界面采用InSb-like界面,控制方法采用表面迁移增强法(migration-enhanced epitaxy, MEE)或Sb soak法及体材料生长相结合。讨论分析了InAs/GaSb超晶格材料界面类型选择的依据,简述了界面控制具体实施理论,以及相关研究机构对于不同红外探测波段的超晶格材料界面类型及控制方法的选择。通过界面结构外延生长工艺设计即在界面控制方法的基础上进行快门顺序实验设计,有效地提高界面层的应力补偿效果,这对于长波、甚长波及双色(甚至多色)超晶格材料的晶体质量优化和器件性能提升具有重要意义。  相似文献   

11.
Oxide removal from GaSb surfaces by several wet chemical treatments and subsequent thermal annealing was investigated. Preferable wet chemical treatments by which surface oxides could be removed effectively at room temperature were evaluated in the experiments. This method can be effectively applied to fabrication processing of MBE GaSb photodoides and Au–GaSb Schottky doides. Low-reverse-leakage GaSb photodiodes and near ideal Au–GaSb Schottky diodes were thus obtianed.  相似文献   

12.
本论文系统的研究了,随着GaSb薄膜生长温度的降低,V/III比的变化对薄膜低缺陷表面质量的影响。为了获得良好表面形貌的GaSb外延层,生长温度与V/III比均需要同时降低。当Sb源裂解温度为900℃时,生长得到低缺陷表面的低温GaSb薄膜的最佳生长条件是生长温度为在再构温度的基础上加60℃且V/III比为7.1。  相似文献   

13.
Antimony-containing alloys have the lowest energy bandgaps of the conventional III-V semiconductors. Organometallic vapor phase epitaxy (OMVPE) has proven to be an effective and convenient technique for the production of the antimony alloys, normally using trimethylantimony (TMSb) as the antimony source. However, TMSb has several problems: (a) it decomposes at relatively high temperatures due to the strong CH3-Sb bond, and (b) its use results in carbon contamination from the active methyl radicals, especially for the growth of aluminum-containing alloys. Recently, tertiarybutyldimethylantimony (TBDMSb) has been successfully used to grow high quality InSb epitaxial layers at temperatures as low as 325°C with low V:III ratios. This paper reports the use of TBDMSb to grow GaSb layers at temperatures from 500° to 650°C. Group V:III ratios close to unity are required for good surface morphologies. The optimum V:III ratio decreases slightly as the growth temperature is lowered due to the incomplete decomposition of trimethylgallium (TMGa). The growth efficiency is about 1 × 104 μm/mole, indicating that there are no significant parasitic reactions between TMGa and TBDMSb. The as-grown layers are p-type. The background carrier concentration is nearly independent of growth temperature. Low temperature (10K) photoluminescence (PL) intensities are also nearly independent of temperature in this range. The PL spectra consist of two peaks, a bound exciton peak at about 792 meV and a native acceptor complex (VGa, GaSb) peak at about 775 meV. At every growth temperature, the ratio of the PL intensity of the bound exiton peak to the native acceptor peak is always higher for samples grown using optimum conditions. The results show that TBDMSb can be used for the OMVPE growth of antimony-containing materials over a wide range of growth temperature.  相似文献   

14.
Some features of the band structure of GaSb have led to a renewed interest in this material. It is well known that Ga(Al)Sb alloys are good candidates to realize avalanche photodetectors, due to their high hole kp/electron kn ionization coefficient ratio. In addition, recent studies have shown GaSb to be attractive for realizing tunneling barriers exhibiting a high value of the peak-to-valley current ratio or IR photodectectors. In order to optimize such devices, the passivation of GaSb is of great interest. Unfortunately, very few investigations have been reported in the literature on GaSb passivation. This paper reports experimental results concerning GaSb surface passivation using a chemical sulfuration method. Physicochemical analysis is attempted through ellipsometric, photoluminescence, and Auger electron spectroscopy measurements. Polluting oxygen and carbon agents are found to be removed from the surface using this process, leading to Schottky diodes of better quality. In addition, the sulfur treatment is shown to stabilize the cleaned surface.  相似文献   

15.
GaSb材料特性、制备及应用   总被引:4,自引:0,他引:4  
Ga Sb 材料在制作长波长光纤通信器件方面具有极大的潜力,因而引起人们广泛的重视。文章简要地概述了 Ga Sb 材料的物理和电学特性,较详细地介绍了 Ga Sb 单晶材料的制备技术和薄膜生长技术。并介绍了 Ga Sb 在光电器件制造方面的进展情况  相似文献   

16.
采用改进的快速推舟液相外延技术在GaAs衬底上成功地生长了GaSb量子点材料.通过原子力显微镜观测了不同生长参数下GaSb量子点材料的形貌(形状、尺寸、密度、尺寸分布均匀性等).分析了不同衬底、不同生长源配比、生长源与衬底的不同接触时间等生长条件参数对GaSb量子点生长的影响.研究表明在GaAs衬底上、富镓生长源配比以及较短的生长源和衬底接触时间下更易获得高质量的GaSb量子点.上述生长条件的摸索和研究对于GaSb量子点器件应用具有重要意义.  相似文献   

17.
An investigation with the objective of improving n-type ohmic contacts to GaSb-based devices is described. This study involves a series of n-GaInAsSb and n-GaSb samples with varying doping, grown on semi-insulating (SI) GaAs substrates. These samples were fabricated into mesa-etched, transfer-length method (TLM) structures, and the specific-contact resistivity and sheet resistance of these layers as a function of majority electron concentration were measured. Extremely low specific-contact resistivities of about 2 × 10−6 Ω-cm2 and sheet resistances of about 4 Ω/▭ are found for n-type GaInAsSb doped at about 3 × 1018 cm−3.  相似文献   

18.
分析了非掺锑化镓单晶片的化学抛光机制和影响获得表面质量良好的非掺锑化镓单晶片的因素,得到了非掺锑化镓的抛光工艺参数。利用该工艺可以制备表面光洁、平整、无缺陷的非掺锑化镓单晶抛光片。  相似文献   

19.
采用GaSb体材料和InAs/GaSb超晶格分别作为短波与中波吸收材料,外延生长制备了NIPPIN型短中双色红外探测器。HRXRD及AFM测试表明,InAs/GaSb超晶格零级峰和GaSb峰半峰宽FWHM分别为17.57 arcsec和19.15 arcsec,10μm×10μm范围表面均方根粗糙度为1.82?。77 K下,SiO_2钝化器件最大阻抗与面积乘积值RA为5.58×10~5Ω?cm~2,暗电流密度为5.27×10~(-7)A?cm~(-2),侧壁电阻率为6.83×10~6Ω?cm。经阳极硫化后,器件最大RA值为1.86×10~6Ω?cm~2,暗电流密度为4.12×10~(-7)A?cm~(-2),侧壁电阻率为4.49×10~7Ω?cm。相同偏压下,硫化工艺使器件暗电流降低1-2个数量级,侧壁电阻率提高了1个数量级。对硫化器件进行了光谱响应测试,器件具有依赖偏压极性的低串扰双色探测性能,其短波通道与中波通道的50%截止波长分别为1.55μm和4.62μm,在1.44μm、2.7μm和4μm处,响应度分别为0.415 A/W、0.435 A/W和0.337 A/W。  相似文献   

20.
Heavily compensated GaSb (2-in.-diameter substrates) with resistivity as high as 7 × 103 Ω-cm, corresponding to a net donor concentration of 3.5×1013 cm−3 at 77 K, and 16.4 Ω-cm, corresponding to net donor concentration of 1.16×1016 cm−3 at 300 K, have been obtained by tellurium (Te) compensation in vertical-Bridgman-grown bulk crystals. Very interesting p- to n-type as well as n- to p-type changes have been observed as a function of temperature in these samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号