首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用可调谐有源电感复用结构,设计了一款用于3G TD-SCDMA和WLAN的2.4GHz/5.2GHz双频段低噪声放大器(DB-LNA)。2.4GHz频段电路采用折叠共源共栅(FC)结构,5.2GHz频段电路采用共栅(CG)结构。FC和CG结构均采用可调谐有源电感,通过调谐有源电感的等效阻抗,优化匹配到源阻抗。基于TSMC 0.18μm CMOS工艺,实现了有源电感复用型DB-LNA。ADS仿真结果表明,频率为2.4GHz时,S21=35dB,NF=4.42~4.59dB,IIP3=0dBm,P-1dB=-14dBm;频率为5.2GHz时,S21=34dB,NF=2.74~2.75dB,IIP3=-5dBm,P-1dB=-9dBm。  相似文献   

2.
基于Tower Jazz 0.13 μm SOI CMOS工艺,提出了一种应用于无线局域网的2.4/5.5 GHz双频段低噪声放大器(LNA)。该双频段LNA基于带源极电感的共源共栅结构,在放大管栅极与共源共栅管漏极之间增加负反馈电容,以改善5.5 GHz频段的阻抗匹配。工作频段的切换通过开关控制的电感电容匹配网络实现。SOI射频开关通过增加MOS管尺寸来减小导通时的插入损耗,并且保持较低的关断电容,使开关的引入对LNA性能的影响最小化。Cadence后仿真结果表明,在2.4 GHz频段范围内,S21为10.3~10.7 dB,NF为2.1 ~2.2 dB,IIP3为5 dBm;在5.5 GHz频段范围内,S21为9.7 ~11.8 dB,NF为2.4~2.9 dB,IIP3为14 dBm。  相似文献   

3.
景一欧  李勇  赖宗声  孙玲  景为平   《电子器件》2007,30(4):1144-1147
采用0.18 μm CMOS工艺,实现了双频段低噪声放大器设计.通过射频选择开关,电路可以分别工作在无线局域网标准802.11g规定的2.4 GHz和802.11a规定的5.2 GHz频段.该低噪声放大器为共源共栅结构,设计中采用了噪声阻抗和输入阻抗同时匹配的噪声优化技术.电路仿真结果表明:在2.4 GHz频段电路线性增益为15.4 dB,噪声系数为2.3 dB,1 dB压缩点为-12.5 dBm,IIP3为-4.7 dBm;5.2 GHz频段线性增益为12.5 dB,噪声系数为2.9 dB,1 dB压缩点为-11.3 dBm,IIP3为-5.5 dBm.  相似文献   

4.
本文陈述了一个基于单端共栅与共源共栅级联结构的超宽带低噪声放大器(LNA)。该LNA用标准90-nm RF CMOS工艺实现并具有如下特征:在28.5到39 GHz频段内测得的平坦增益大于10 dB;-3 dB带宽从27到42 GHz达到了15 GHz,这几乎覆盖了整个Ka带;最小噪声系数(NF)为4.2 dB,平均NF在27-42 GHz频段内为5.1 dB;S11在整个测试频段内小于-11 dB。40 GHz处输入三阶交调点(IIP3)的测试值为 2 dBm。整个电路的直流功耗为5.3 mW。包括焊盘在内的芯片面积为0.58*0.48 mm2。  相似文献   

5.
提出了一种基于共源共栅及电阻并联反馈结构的超宽带低噪声放大器(LNA)。在3~10 GHz的工作频段范围内,采用电阻并联反馈和π型匹配网络结构,实现宽带输入匹配,并有效减小整个电路的噪声系数。利用共源共栅输出漏极的并联峰化技术,实现平坦的高频增益及噪声的有效抑制。采用源极电感(Ls)负反馈及晶体管M3构成的源极跟随器,提高电路的线性度和输出匹配。基于TSMC 0.18 μm RFCMOS工艺库,采用Cadence Spectre RF,对LNA原理图和版图进行仿真。仿真结果显示,该LNA的S11和S22均小于-10 dB,S12小于-32 dB,S21为11.38±0.36 dB,噪声系数为3.37±0.2 dB,P1dB和IIP3分别为-9.41 dBm和-2.7 dBm。设计的LNA在带宽内具有良好的输入输出匹配、较好的反向隔离度及线性度、高且平坦的增益和低且平坦的噪声系数。  相似文献   

6.
张正  张延华  黄鑫  那伟聪 《微电子学》2021,51(2):151-156
设计了一种采用可调谐有源电感(TAI)的多频段低噪声放大器(MBLNA)。在放大级中,由电感值及Q值可多重调谐的TAI与电容值可调谐的变容二极管构成选频网络,并结合共射-共基放大电路,实现对不同频段信号进行选择放大。输入级采用带有输入串联电感与发射极电感负反馈的共射放大电路,实现了MBLNA输入阻抗的宽带匹配。输出级采用共射放大电路,在满足输出匹配的同时,再次对信号进行放大,保证了MBLNA的高增益,同时输出级与放大级构成电流复用结构,降低了整体电路功耗。基于WIN 0.2 μm GaAs HBT工艺库,利用ADS对MBLNA的主要性能参数进行验证。结果表明,该MBLNA可以在1.9 GHz、2.4 GHz、3.4 GHz、5.2 GHz等多个频段下工作;电压增益S21分别为27.2 dB、25.5 dB、21.6 dB、17.4 dB;噪声系数NF在1.3 dB~5.2 dB之间;输入和输出匹配良好;电路总功耗仅为17.5 mW。  相似文献   

7.
何小威  李晋文  张民选 《电子学报》2010,38(7):1668-1672
 针对UWB应用设计实现了一个1.5-6GHz的两级CMOS低噪声放大器(LNA). 通过引入共栅(CG)和共源(CS)结构以获得宽范围内的输入匹配,采用电流镜和峰化电感进行电流复用,所提出的LNA实现了非常平坦化的功率增益和噪声系数(NF). 经标准0.18μm CMOS工艺实现后,版图后模拟结果表明在1.5-5GHz频率范围内功率增益(S21)为11.45±0.05dB,在2-6GHz频率范围内噪声系数(NF)为5.15±0.05dB,输入损耗(S11)小于-18dB. 在5GHz时,模拟得到的三阶交调点(IIP3)为-7dBm,1dB压缩点为-5dBm.在1.8V电源电压下,LNA消耗6mA的电流,版图实现面积仅为0.62mm^2.  相似文献   

8.
基于TSMC 0.18 μm CMOS工艺,设计并实现了一种双频段低噪声放大器(DB-LNA)。在输入级中,采用了2个LC并联谐振网络串联结构,结合PMOS管的源极负反馈电感,实现了DB-LNA在双频段的输入阻抗匹配。在放大级中,采用CMOS互补共源放大结构和电流复用技术,在提高系统增益的同时,实现了DB-LNA的低功耗。在输出级中,采用NMOS晶体管作电流源的源跟随器,对信号电压进行缓冲,实现了输出阻抗匹配。利用ADS进行仿真验证,结果表明,该低噪声放大器在1.9 GHz和2.4 GHz 2个工作频段下,其增益(S21)分别为26.69 dB和20.12 dB;输入回波损耗(S11)分别为-15.45 dB和-15.38 dB;输出回波损耗(S22)分别为-16.73 dB和-20.63 dB;噪声系数(NF)分别为2.02 dB和1.77 dB;在3.5 V的工作电压下,静态功耗仅有9.24 mW。  相似文献   

9.
王春华  万求真 《半导体学报》2011,32(8):085002-6
本文基于特许0.18μm CMOS工艺,提出了一种新型的低复杂3.1~10.6GHz超宽带LNA电路,它由两级简单的放大器通过级间电感连接构成。第一级放大器使用电阻电流复用结构和双电感退化技术来达到宽带输入匹配和低噪声性能,第二级放大器使用带电感峰值技术的共源级放大器来同时达到高平坦增益和好的宽带性能。测试结果表明,在3.1~10.6GHz频段内,提出的超宽带LNA的最大功率增益为15.6dB,S12为-45dB,输入输出隔离度小于-10dB,噪声系数NF为2.8~4.7dB,在6GHz时的输入三阶交调点IIP3为-7.1dBm。芯片在1.5V电源电压下,消耗的功率为14.1mW,芯片总面积为0.8mm0.9mm。  相似文献   

10.
陈述了一个基于单端共栅与共源共栅级联结构的超宽带低噪声放大器(LNA).该LNA用标准90-nm RFCMOS工艺实现并具有如下特征:在28.5~39 GHz频段内测得的平坦增益大于10 dB;-3 dB带宽从27~42 GHz达到了15 GHz,这几乎覆盖了整个Ka带;最小噪声系数(NF)为4.2dB,平均NF在27 ~ 42 GHz频段内为5.1 dB;S11在整个测试频段内小于-11 dB.40 GHz处输入三阶交调点(IIP3)的测试值为+2 dBm.整个电路的直流功耗为5.3 mW.包括焊盘在内的芯片面积为0.58 mm×0.48 mm.  相似文献   

11.
采用SMIC0.13μmRFCMOS工艺设计,并实现了应用于无线传感网络的2.4GHz差分低功耗低噪声放大器。在低功耗约束下,电路采用差分共源共栅源极退化电感结构。考虑了ESD保护PAD和封装等寄生电容,分析了输入阻抗匹配、增益、噪声和线性度,提出了低功耗条件下输入阻抗匹配和噪声优化措施。芯片测试结果显示,噪声系数NF为2.5dB,输出采用片外无源网络匹配下功率增益S21为9.4dB,输入三阶交调点IIP3为-1.5dBm。在1.2V电源电压下消耗电流3.3mA。芯片面积为860μm×680μm。  相似文献   

12.
从低噪声放大器(LNA)的设计原理出发,提出并设计了一种工作于1GHz的实用LNA.电路采用共源-共栅的单端结构,用HSPICE软件对电路进行分析和优化.模拟过程中选用的器件采用TSMC 0.5μm CMOS工艺实现.模拟结果表明所设计的LNA功耗小于15mW,增益大于10dB,噪声系数为1.87dB,IIP3大于10dBm,输入反射小于-50dB.可用于1GHz频段无线接收机的前端.  相似文献   

13.
1V高线性度2.4GHz CMOS低噪声放大器   总被引:2,自引:0,他引:2  
讨论了低噪声放大器(LNA)在低电压、低功耗条件下的噪声优化及线性度提高技术.使用Chartered 0.25μm RF CMOS 工艺设计一个低电压折叠式共源共栅LNA.后仿真结果表明在1V电源下,2.36GHz处的噪声系数NF仅有1.32dB,正向增益S21为14.27dB,反射参数S11、S12、S22分别为 -20.65dB、-30.27dB、-24dB,1dB压缩点为-13.0dBm,三阶交调点IIP3为-0.06dBm,消耗的电流为8.19mA.  相似文献   

14.
基于有源电感的全集成超宽带低噪声放大器   总被引:1,自引:0,他引:1  
利用有源电感来实现超宽带低噪声放大器(UWB LNA),不但可以减小芯片面积、改善增益平坦度,而且可通过外部调节偏置电压来调谐有源电感的电感值,进而调整设计中没有考虑到的由工艺变化及封装寄生带来的增益退化.采用TSMC 0.35 μm SiGe BiCMOS工艺,利用Cadence设计工具完成了放大器电路及版图的设计.在3.1~10.6 GHz工作频率范围内,通过外部调节电压来调谐有源电感,可使LNA的增益S21在16~19 dB范围内变化,输入输出回波损耗S11,S22均小于-10 dB,噪声为2.4~3.7 dB,输入3阶截点IIP3为-4 dBm.整个电路芯片面积仅为0.11 mm2.  相似文献   

15.
张萌  李智群 《半导体学报》2012,33(10):105005-7
本文给出一种基于TSMC 0. 18μm RF CMOS工艺、应用于无线传感器网络2.4GHz的低功耗低噪声放大器设计。本设计采用两级级联的交叉耦合共栅结构,第一级共栅级采用电容交叉耦合技术以降低电路功耗的同时提高电路增益、降低电路噪声。第二级共栅级采用正反馈交叉耦合技术以提供一个负阻抵消负载电感的寄生电阻,提高电感等效Q值,进一步提高增益。为了达到足够的增益,作者设计了一款片上差分电感作为负载,对其进行了电磁场仿真,建立了双π模型并进行了流片验证。该低噪声放大器经过流片,测试结果显示:高增益工作情况下,其增益S21为16.8dB,低增益工作情况下为1dB。高增益工作情况下,其噪声系数为3.6dB;低增益工作情况下,电路的输入1dB压缩点为-8dBm,IIP3为2dBm。该低噪声放大器在1.8V电源电压下,工作电流约为1.2mA。  相似文献   

16.
基于0.18 μm CMOS工艺,设计了一种面向低速率低功耗应用的2.4 GHz射频前端电路,包含2个单刀双掷开关、1个功率放大器和1个低噪声放大器。采用栅衬浮动电压偏置技术对传统单刀双掷开关进行了改进,以提高其线性度;功率放大器采用两级放大结构,对全集成的低噪声放大器进行了噪声优化;集成了输入输出匹配网络,采用了到地电感,以提高输入输出端的ESD性能。在接收模式时,电路的静态电流为10.7 mA,增益为11.7 dB,IIP3为2.1 dBm,噪声系数为3.4 dB。在发射模式时,电路的静态电流为17.4 mA,功率增益为17.7 dB,输出P1dB为20 dBm,饱和功率为21.4 dBm,最大PAE为23.8%,在输出功率为20 dBm时的频谱满足802.15.4协议要求。  相似文献   

17.
肖谧  罗锋 《微电子学》2016,46(4):433-436
设计了一种用于2.45 GHz有源标签接收机的低中频正交下变频混频器。改进了传统的吉尔伯特结构, 采用了共享跨导正交结构和电流注入技术, 以提高混频器的增益, 减小混频器的噪声。该混频器采用UMC 0.18 μm CMOS工艺设计。仿真结果表明, 该混频器在1.8 V电压下, 电流消耗为3.1 mA, 转换增益为17.18 dB, 输入1 dB压缩点Pin-1dB与输入3阶截点IIP3分别为-13.5 dBm, -3.23 dBm, 在2 MHz中频下的噪声系数为14 dB。  相似文献   

18.
提出了一种基于双反馈电流复用结构的新型CMOS超宽带(UWB)低噪声放大器(LNA),放大器工作在2~12 GHz的超宽带频段,详细分析了输入输出匹配、增益和噪声系数的性能。设计采用TSMC 0.18μm RF CMOS工艺,在1.4 V工作电压下,放大器的直流功耗约为13mW(包括缓冲级)。仿真结果表明,在2~12 GHz频带范围内,功率增益为15.6±1.4 dB,输入、输出回波损耗分别低于-10.4和-11.5 dB,噪声系数(NF)低于3 dB(最小值为1.96 dB),三阶交调点IIP3为-12 dBm,芯片版图面积约为712μm×614μm。  相似文献   

19.
采用0.13 μm RF CMOS工艺,设计了一款可应用于EoC收发芯片的三频段上混频器,通过改变接入并联LC负载谐振网络中电容的值,使电路分别工作在1.2 GHz,2 GHz,2.4 GHz频段。在3.3 V电源电压下,1.2 GHz,2 GHz,2.4 GHz频段上,总电流为35.1 mA;单边带(SSB)电压转换增益分别为3.77 dB,4.97 dB,4.78 dB;输出1 dB压缩点分别为-0.22 dBm,0.78 dBm,0.5 dBm;噪声系数分别为5.13 dB,5.76 dB,6.67 dB。通过控制输入跨导级的偏置实现混频器的开启和关断,上混频器的开启时间为200 ns,关断时间小于100 ns。  相似文献   

20.
一种多模多频无线收发器前端SiGe BiCMOS低噪声放大器   总被引:1,自引:0,他引:1  
基于IBM 0.18μm SiGe BiCMOS工艺,提出了一种应用于2.4~2.5GHz 802.11b/g频段的低噪声放大器(LNA).电路采用全差分发射极电感负反馈共射共基(Cascode)结构,对称电感有效地降低了芯片面积,优化了电路性能.仿真结果表明:该电路在2.4 GHz到2.5 GHz频率范围内,增益(S21)达到25 dB,噪声系数(NF)小于1.5 dB,大幅度提高了收发机系统的性能.此外,输入和输出匹配(S11,S22)分别达到-15 dB,1 dB压缩点大于-25 dBm.电源电压为2.5 V时电路总电流为3 mA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号