首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
曾志  周鑫 《半导体技术》2021,46(5):354-357
基于0.15 μm GaAs pin二极管和GaAs PHEMT工艺,设计并实现了一款5~13 GHz限幅低噪声放大器(LNA)单片微波集成电路(MMIC).该MMIC中限幅器采用三级反向并联二极管结构,优化了插入损耗和耐功率性能;LNA采用两级级联设计,利用负反馈和源电感匹配,在宽带下实现平坦的增益和较小的噪声;限幅器和LNA进行一体化设计,实现了宽带耐功率和低噪声目标.测试结果表明,在5~13GHz内,该MMIC的小信号增益大于20 dB,噪声系数小于1.8 dB,耐功率大于46 dBm(2 ms脉宽,30%占空比),总功耗小于190 mW,芯片尺寸为3.3 mm×1.2 mm.限幅LNA MMIC芯片的尺寸较小,降低了组件成本,同时降低了组件装配难度,提高通道之间的一致性.  相似文献   

2.
一种具有新型增益控制技术的CMOS宽带可变增益LNA   总被引:1,自引:0,他引:1  
高速超宽带无线通信的多标准融合是未来射频器件的发展趋势,该文提出一种基于CMOS工艺、具有新型增益控制技术的宽带低噪声放大器(LNA),采用并联电阻反馈实现宽带输入匹配,并引入噪声消除技术来减小噪声以提高低噪声性能;输出带有新型6位数字可编程增益控制电路以实现可变增益。采用中芯国际0.13m RF CMOS工艺流片,芯片面积为0.76 mm2。测试结果表明LNA工作频段为1.1-1.8 GHz,最大增益为21.8 dB、最小增益8.2 dB,共7种增益模式。最小噪声系数为2.7 dB,典型的IIP3为-7 dBm。  相似文献   

3.
基于130 nm CMOS工艺设计了一款宽带低噪声放大器(LNA),适用于Ka波段的5G应用。通过降低输入阻抗与最佳源阻抗的偏差以抑制噪声,该LNA实现了宽带的最佳噪声系数匹配。一方面,该LNA采用由LC串联组合和LC并联组合构成的宽带前端网络,在取得低噪声系数的同时,实现了宽带输入匹配;另一方面,通过体隔离技术和级间电感匹配技术提高了电路增益。同时,通过并联峰值负载技术,提高了LNA的带内增益平坦度。测试结果表明,该LNA的峰值增益为11.2 dB,-3 dB带宽为7.5 GHz(29.1~36.6 GHz)。噪声系数为5.9~6.6 dB,与仿真的最小噪声系数非常接近。输入反射系数(<-10 dB)带宽为6.7 GHz(28.3~35 GHz)。该LNA在1.2 V电源电压下功耗为9 mW,芯片面积为0.54 mm2。  相似文献   

4.
闵丹  马晓华  刘果果  王语晨 《半导体技术》2019,44(8):590-594,622
为满足宽带系统中低噪声放大器(LNA)宽带的要求,采用0.15μm GaAs赝配高电子迁移率晶体管(PHEMT)工艺,设计了两款1 MHz^40 GHz的超宽带LNA,分别采用均匀分布式放大器结构及渐变分布式放大器结构,电路面积分别为1.8 mm×0.85 mm和1.8 mm×0.8 mm。电磁场仿真结果表明,1 MHz^40 GHz频率范围内,均匀分布式LNA增益为15.3 dB,增益平坦度为2 dB,噪声系数小于5.1 dB;渐变分布式LNA增益为14.16 dB,增益平坦度为1.74 dB,噪声系数小于3.9 dB。渐变分布式LNA较均匀分布式LNA,显著地改善了增益平坦度、噪声性能和群延时特性。  相似文献   

5.
陈述了一个基于单端共栅与共源共栅级联结构的超宽带低噪声放大器(LNA).该LNA用标准90-nm RF CMOS工艺实现并具有如下特征:在28.5~39 GHz频段内测得的平坦增益大于10 d B;-3 d B带宽从27~42 GHz达到了15 GHz,这几乎覆盖了整个Ka带;最小噪声系数(NF)为4.2 d B,平均NF在27~42 GHz频段内为5.1 d B;S11在整个测试频段内小于-11 d B.40 GHz处输入三阶交调点(IIP3)的测试值为+2 d Bm.整个电路的直流功耗为5.3 m W.包括焊盘在内的芯片面积为0.58 mm×0.48 mm.  相似文献   

6.
桑泽华  李永明 《微电子学》2006,36(1):114-117
结合切比雪夫滤波器,可以实现宽带输入匹配的特性和片上集成窄带低噪声放大器(LNA)的噪声优化方法。提出一套完整的基于CMOS工艺的宽带LNA的设计流程,并设计了一个应用于超宽带(UWB)系统的3~5 GHz宽带LNA电路。模拟结果验证了设计流程的正确性。该电路采用SMIC 0.18μm CMOS工艺进行模拟仿真。结果表明,该LNA带宽为3~5 GHz,功率增益为5.6 dB,带内增益波动1.2dB,带内噪声系数为3.3~4.3 dB,IIP3为-0.5 dBm;在1.8V电源电压下,主体电路电流消耗只有9 mA,跟随器电流消耗2 mA,可以驱动1.2 pF容性负载。  相似文献   

7.
张瑛  李泽有  李鑫  耿萧 《微电子学》2019,49(1):44-48, 54
宽带低噪声放大器是5G无线通信系统中的关键模块。针对6 GHz以下5G通信应用频段,基于65 nm CMOS工艺,设计了一种三级均匀分布式宽带低噪声放大器。在增益单元电路中,采用噪声抵消技术降低了噪声,同时实现了信号的单转双变换,并通过电流复用技术提升了增益。栅极人工传输线的终端采用了RL型负载,进一步改善了放大器的噪声性能。仿真结果表明,该分布式低噪声放大器的带宽为0.5~5.7 GHz,带内增益达到24.2 dB,噪声系数低于4.5 dB,而最小噪声系数仅为2.7 dB。  相似文献   

8.
杨华光  徐燕萍  胡斯哲  周继东  岳宏卫 《微电子学》2022,52(3):393-398, 405
基于0.18 μm CMOS工艺,设计了一种应用于10 GHz以下无线通信频段的两级超宽带低噪声放大器(LNA)。第一级在互补共源级的基础上通过引入电阻反馈、电感峰化技术和伪电阻结构,在拓展带宽和提高增益的同时降低了噪声。第二级在共源放大的基础上通过电感峰化技术、增益辅助级和缓冲级的使用,提高了电路的增益并改善了输出宽带匹配特性。仿真结果表明,在0.5~9.2 GHz频率范围内,电路增益为14.2±0.2 dB,噪声系数(NF)小于3.97 dB,整体功耗为12.9 mW。  相似文献   

9.
基于0.15μm GaAs赝配高电子迁移率晶体管(PHEMT)工艺,成功研制了一款30~34 GHz频带内具有带外抑制特性的低功耗低噪声放大器(LNA)微波单片集成电路(MMIC)。该MMIC集成了滤波器和LNA,其中滤波器采用陷波器结构,可实现较低的插入损耗和较好的带外抑制特性;LNA采用单电源和电流复用结构,实现较高的增益和较低的功耗。测试结果表明,该MMIC芯片在30~34 GHz频带内,增益大于28 dB,噪声系数小于2.8 dB,功耗小于60 mW,在17~19 GHz频带内带外抑制比小于-35 dBc。芯片尺寸为2.40 mm×1.00 mm。该LNA MMIC可应用于毫米波T/R系统中。  相似文献   

10.
设计并实现了一种适用于X波段(11~12 GHz)的高性能低噪声放大器(LNA),该低噪声放大器选用Ga As FET(MGF4941AL)低噪声半导体管,采用三级级联的方式设计,三级通过采用不同静态工作点之间的配合,达到降低放大器噪声提高增益的目的。利用微波电路仿真软件ADS仿真优化后加工实物并测试。测试结果表明,低噪声放大器在11~12 GHz工作频带内的噪声系数小于2dB,输入/输出驻波比(VSWR)小于2,功率增益大于30 d B,增益平坦度小于1.5 d B,适用于X波段接收机前端。  相似文献   

11.
沈传魁  黄鲁  方毅 《微电子学》2015,45(1):10-13
基于SMIC 0.13 μm CMOS工艺,设计了一种应用于脉冲超宽带无线通信系统接收机的高增益低噪声放大器(LNA)。该LNA工作在6~9 GHz频段,单端输入,差分输出,采用电容交叉耦合与电流复用技术提高了增益,实现了低功耗性能。仿真结果表明,LNA电路工作在7.5 GHz中心频率时,增益高达46 dB,噪声系数为3.05 dB,输入端回波损耗为-12.5 dB,输出端回波损耗为-16.7 dB,在1.2 V电源供电下的核心消耗功耗为16 mW,核心电路面积仅为0.5 mm2。  相似文献   

12.
采用中国电子科技集团公司第十三研究所的GaAs PHEMT低噪声工艺,设计了一款2~4 GHz微波单片集成电路低噪声放大器(MMIC LNA)。该低噪声放大器采用两级级联的电路结构,第一级折中考虑了低噪声放大器的最佳噪声和最大增益,采用源极串联负反馈和输入匹配电路,实现噪声匹配和输入匹配。第二级采用串联、并联负反馈,提高电路的增益平坦度和稳定性。每一级采用自偏电路设计,实现单电源供电。MMIC芯片测试结果为:工作频率为2~4 GHz,噪声系数小于1.0 dB,增益大于27.5 dB,1 dB压缩点输出功率大于18 dBm,输入、输出回波损耗小于-10 dB,芯片面积为2.2 mm×1.2 mm。  相似文献   

13.
魏本富  袁国顺  徐东华  赵冰   《电子器件》2008,31(2):600-603
设计了一个可以同时工作在900 MHz和2.4 GHz的双频带(Dual-Band)低噪声放大器(LNA).相对于使用并行(parallel)结构LNA的双频带解决方案,同时工作(concurrent)结构的双频带LNA更能节省面积和减少功耗.此LNA在900MHz和2.4 GHz两频带同时提供窄带增益和良好匹配.该双频带LNA使用TSMC 0.25 μm 1P5M RF CMOS工艺.工作在900MHz时,电压增益、噪声系数(Noise Figure)分别是21 dB、2.9 dB;工作在2.4 GHz时,电压增益、噪声系数分别是25dB、2.8 dB,在电源电压为2.5 V时,该LNA的功耗为12.5mW,面积为1.1mm×0.9 mm.使用新颖的静电防护(ESD)结构使得在外围PAD上的保护二极管面积仅为8 μm×8 μm时,静电防护能力可达2 kV(人体模型)  相似文献   

14.
基于90 nm GaAs赝配高电子迁移率晶体管(PHEMT)工艺设计并制备了一款2~18 GHz的超宽带低噪声放大器(LNA)单片微波集成电路(MMIC)。该款放大器具有两级共源共栅级联结构,通过负反馈实现了超宽带内的增益平坦设计。在共栅晶体管的栅极增加接地电容,提高了放大器的高频输出阻抗,进而拓宽了带宽,提高了高频增益,并降低了噪声。在片测试结果表明,在5 V单电源电压下,在2~18 GHz内该低噪声放大器小信号增益约为26.5 dB,增益平坦度小于±1 dB,1 dB压缩点输出功率大于13.5 dBm,噪声系数小于1.5 dB,输入、输出回波损耗均小于-10 dB,工作电流为100 mA,芯片面积为2 mm×1 mm。该超宽带低噪声放大器可应用于雷达接收机系统中,有利于接收机带宽、噪声系数和体积等的优化。  相似文献   

15.
基于65 nm CMOS工艺,设计了一种工作于130~150 GHz的毫米波低噪声放大器(LNA),它采用五级级联共源组态的拓扑结构。第一级电路采用最小噪声匹配,保证了放大器的噪声性能。后级电路采用最大增益匹配,保证电路具有较高的增益。对无源器件进行了结构优化,电感的品质因数在140 GHz处达到15以上。仿真结果表明,在1.2 V电源电压、0.45 V栅极偏置电压下,该LNA的直流功耗为54.1 mW。在130~150 GHz频带内,噪声系数小于7.5 dB,增益大于18 dB。芯片尺寸为0.5 mm×0.3 mm。该LNA有望被应用于D波段接收系统中。  相似文献   

16.
马晓民  王文骐 《半导体技术》2002,27(8):46-49,57
介绍了一种频率为1.8GHz的低噪声放大器(LNA)的设计方案,采用TSMC 0.35 μ m CMOS工艺实现,增益为25dB,噪声系数2.56dB,功耗≤10mW,IIP3为-25dB或5dBm.  相似文献   

17.
基于70 nm InP HEMT工艺,设计了一款五级共源放大级联结构230~250 GHz低噪声太赫兹单片集成电路(TMIC)。该放大器采用扇形线和微带线构成栅极和源极直流偏置网络,用以隔离射频信号和直流偏置信号;基于噪声匹配技术设计了放大器的第一级和第二级,基于功率匹配技术设计了中间两级,最后一级重点完成输出匹配。在片测试结果表明,230~250 GHz频率范围内,低噪声放大器的小信号增益大于20 dB。采用Y因子法对封装后的低噪声放大器模块完成了噪声测试,频率为243~248 GHz时该MMIC放大器噪声系数优于7.5 dB,与HBT和CMOS工艺相比,基于HEMT工艺的低噪声放大器具有3 dB以上的噪声系数优势。  相似文献   

18.
介绍了一种频率为1.8GHz的低噪声放大器(LNA)的设计方案,采用TSMC 0.35μm CMOS工艺实现,增益为25dB,噪声系数2.56dB,功耗≤10mW,IIP3为-25dB或5dBm。  相似文献   

19.
王春华  万求真 《半导体学报》2011,32(8):085002-6
本文基于特许0.18μm CMOS工艺,提出了一种新型的低复杂3.1~10.6GHz超宽带LNA电路,它由两级简单的放大器通过级间电感连接构成。第一级放大器使用电阻电流复用结构和双电感退化技术来达到宽带输入匹配和低噪声性能,第二级放大器使用带电感峰值技术的共源级放大器来同时达到高平坦增益和好的宽带性能。测试结果表明,在3.1~10.6GHz频段内,提出的超宽带LNA的最大功率增益为15.6dB,S12为-45dB,输入输出隔离度小于-10dB,噪声系数NF为2.8~4.7dB,在6GHz时的输入三阶交调点IIP3为-7.1dBm。芯片在1.5V电源电压下,消耗的功率为14.1mW,芯片总面积为0.8mm0.9mm。  相似文献   

20.
设计了一种应用于无线传感网的低功耗宽带低噪声放大器。通过使用电容交叉耦合的共栅放大器结构来提高增益,同时实现宽带输入阻抗匹配。运用PMOS和NMOS层叠结构实现电流复用,降低了功耗。该低噪声放大器采用0.18 μm SMIC CMOS工艺设计。后仿真结果表明,该放大器在1.8 V电源供电下的功耗仅为0.712 mW,在3 dB带宽0.043~1.493 GHz范围内的峰值增益为20.44 dB,最小噪声系数为4.024 dB,输入3阶交调点为-3.73 dBm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号