首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
定点符号高速乘法器的设计与FPGA实现   总被引:4,自引:3,他引:1  
文章系统地研究了符号定点高速乘法器的实现算法和结构,采用了修正布斯算法,华莱士压缩树.4:2压缩器,伪4:2压缩器以及平方根求和结构。采用VerilogHDL实现了整个乘法器,在单个时钟周期完成一次16位的符号数乘法。为了验证该乘法器的性能,在VertexII-xc2v1000实现了该乘法器,频率可达62.27MHz。每秒钟可完成6227万次16位的符号乘法。  相似文献   

2.
设计了一种新型可重构BOOTH乘法器.该乘法器在BOOTH编码、部分积生成、部分积压缩和最终加法器的设计中都充分考虑了可重构的需要,能方便快速地实现8位乘法器和16位乘法器之间的切换,便于在同一电路上实现基于字节和字的多媒体信息处理.该乘法器通过VHDL语言编程实现,采用XST综合,并通过Modelsim在XC2V4000上完成布局布线后仿真.试验结果表明:与基于乘法分配律的可重构乘法器相比,该方法具有占用资源少和速度快的优点.  相似文献   

3.
介绍了一种8位RISC结构单片机中乘法器的设计方法,分析了移位相加、加法器树、Booth编码一移位相加等多种乘法器的工作原理,并采用Synopsys综合工具实现了这些乘法器。综合及仿真结果表明,根据该8位RISC结构单片机特点设计的Booth编码一移位相加乘法器较之其它类型乘法器速度提高很多,而面积仅比最小的移位相加乘法器增加不到18%。从速度和面积两方面综合考虑,是较好的设计方案。  相似文献   

4.
对基于阵列乘法器、修正布斯算法(MBA)乘法器、华莱士(WT)乘法器和MBA-WT混合乘法器的四种架构的32位乘法器性能进行了比较,在选择乘法器时,应根据实际应用,从面积、速度、功耗等角度权衡考虑。  相似文献   

5.
本文介绍了三种高速乘法器架构:阵列乘法器、修正布斯算法(MBA)乘法器、华莱士(WT)乘法器,并对基于以上三种架构的32位乘法器性能进行了比较。选择乘法器,应根据实际应用。从面积、速度、功耗等角度权衡考虑。  相似文献   

6.
文章提出了基于全1多项式基的可伸缩分组并行有限域乘法器结构,并按照最低位先入和最高位先入的方式分别进行了算法描述,分别称为AOPBLSDM(AOP-Based LSD-first Digital-Serial Multiplier)和AOPBMSDM(AOP-Based MSD-first Digital-Serial Multiplier)。该乘法器的结构规整,适于VLSI实现;同时由于该乘法器具有面积和速度可伸缩度大的特点,因而可以在不同的应用场合下找到最佳的实现方案。理论分析及ASIC综合实现结果均表明,本文所提出的结构在面积和速度上具有一定的优势。  相似文献   

7.
介绍了一个八位高速并行乘法器的IP设计。该乘法器的部分积产生电路采用非重叠的三位编码方式,并且改进了Wallace加法树内部的连线方式,用VHDL语言描述了整个设计,并在Altera公司EPF10K10LC84-3上实现了该乘法器。  相似文献   

8.
可配置GF(2m)域Digit-Serial乘法器   总被引:1,自引:0,他引:1  
本文针对椭圆加密算法的应用,基于已有的GF(2^m)域Digit—Serial不可配置乘法器,通过控制输入数据格式、内镶GF(2^m)域Digit—Serial不可配置乘法器,得到了一个在硬件上可配置的快速乘法器。运用本文的思想实现了可计算域值为150~256的GF(2^m)域Digit-Serial的乘法器,用此乘法器计算域值为163的乘法,仿真结果同域值为163的不可配置并行乘法器的一致。本文最后还给出了几种可配置乘法器结构的性能比较,结果表明在硬件上可配置的GF(2^m)域乘法器解决方案中,本文提出的结构克服了并行可配置乘法器在大域值应用中关键路径延迟太长、硬件开销太大,串行可配置乘法器实现速度太慢的弊病。需要说明的是,本文的实现方法可以内镶各种不同的GF(2^m)域Digit-Serial不可配置乘法器以满足实际应用的需要。  相似文献   

9.
32位浮点阵列乘法器的设计及算法比较   总被引:8,自引:0,他引:8  
讨论了乘法器用于补码运算的几种算法。通过比较,发现改进型Booth算法是较为理想的算法。该算法在不考虑乘数和被乘数符号的情况下,都可以用统一的步骤来完成乘法运算,而立无需对乘积作任何修王,这极大地提高了乘法器的运算速度。结合改进型Booth算法,设计了一个高性能32位浮点阵列乘法器,它能在单个时钟周期内完成一次24位整数乘或32住浮点乘。该乘法器适于VLSI实现,巳被应用于DSP芯片设计之中。  相似文献   

10.
43位浮点流水线乘法器的设计   总被引:1,自引:0,他引:1       下载免费PDF全文
梁峰  邵志标  孙海珺   《电子器件》2006,29(4):1094-1096,1102
提出一种浮点流水线乘法器IP芯核。该乘法器采用改进的三阶Booth算法减少部分积数目,提出了一种压缩器混用的Wallace树结构压缩阵列,并对关键路径中的5-2压缩器、4—2压缩器和64位CLA加法器进行了优化设计,有效降低了乘法器的延时和面积。经FPGA仿真验证表明,该乘法器运算能力比Altera公司近期提供的同类乘法器单元快15.4%。  相似文献   

11.
Three alternative schemes for secure Virtual Private Network (VPN) deployment over the Universal Mobile Telecommunication System (UMTS) are proposed and analyzed. The proposed schemes enable a mobile node to voluntarily establish an IPsec-based secure channel to a private network. The alternative schemes differ in the location where the IPsec functionality is placed within the UMTS network architecture (mobile node, access network, and UMTS network border), depending on the employed security model, and whether data in transit are ever in clear-text, or available to be tapped by outsiders. The provided levels of privacy in the deployed VPN schemes, as well as the employed authentication models are examined. An analysis in terms of cost, complexity, and performance overhead that each method imposes to the underlying network architecture, as well as to the mobile devices is presented. The level of system reliability and scalability in granting security services is presented. The VPN management, usability, and trusted relations, as well as their behavior when a mobile user moves are analyzed. The use of special applications that require access to encapsulated data traffic is explored. Finally, an overall comparison of the proposed schemes from the security and operation point of view summarizes their relative performance. Christos Xenakis received his B.Sc. degree in computer science in 1993 and his M.Sc. degree in telecommunication and computer networks in 1996, both from the Department of Informatics and Telecommunications, University of Athens, Greece. In 2004 he received his Ph.D. from the University of Athens (Department of Informatics and Telecommunications). From 1998–2000 was with the Greek telecoms system development firm Teletel S.A., where was involved in the design and development of advanced telecommunications subsystems for ISDN, ATM, GSM, and GPRS. Since 1996 he has been a member of the Communication Networks Laboratory of the University of Athens. He has participated in numerous projects realized in the context of EU Programs (ACTS, ESPRIT, IST). His research interests are in the field of mobile/wireless networks, security and distributed network management. He is the author of over 15 papers in the above areas. Lazaros Merakos received the Diploma in electrical and mechanical engineering from the National Technical University of Athens, Greece, in 1978, and the M.S. and Ph.D. degrees in electrical engineering from the State University of New York, Buffalo, in 1981 and 1984, respectively. From 1983 to 1986, he was on the faculty of Electrical Engineering and Computer Science at the University of Connecticut, Storrs. From 1986 to 1994 he was on the faculty of the Electrical and Computer Engineering Department at Northeastern University, Boston, MA. During the period 1993–1994 he served as Director of the Communications and Digital Processing Research Center at Northeastern University. During the summers of 1990 and 1991, he was a Visiting Scientist at the IBM T. J. Watson Research Center, Yorktown Heights, NY. In 1994, he joined the faculty of the University of Athens, Athens, Greece, where he is presently a Professor in the Department of Informatics and Telecommunications, and Director of the Communication Networks Laboratory (UoA-CNL) and the Networks Operations and Management Center. His research interests are in the design and performance analysis of broadband networks, and wireless/mobile communication systems and services. He has authored more than 150 papers in the above areas. Since 1995, he is leading the research activities of UoA-CNL in the area of mobile communications, in the framework of the Advanced Communication Technologies & Services (ACTS) and Information Society Technologies (IST) programmes funded by the European Union (projects RAINBOW, Magic WAND, WINE, MOBIVAS, POLOS, ANWIRE). He is chairman of the board of the Greek Universities Network, the Greek Schools Network, and member of the board of the Greek Research Network. In 1994, he received the Guanella Award for the Best Paper presented at the International Zurich Seminar on Mobile Communications.  相似文献   

12.
We present a new method for data integration and security by mixing medical waveforms and images with encrypted patient identifiers and unencrypted ancillary information, such as acquisition parameters, diagnostic comments and notes in textual, pictorial, and voice forms. We vary the sampling rate according to the instantaneous frequency of the signal. Redundant samples (or pixels) are eliminated and replaced by associative data which are labeled using a status string encoded based on the Huffman and run-length techniques. This method achieves both data compression and integration simultaneously, allows synchronized presentation of information from different sources by using multimedia technology, and provides data security features. Mingui Sun received a B.S. degree from the Shenyang Chemical Engineering Institute, China, in 1982, and M.S. and Ph. D. degrees in Electrical Engineering from the University of Pittsburgh in 1986 and 1989, respectively. He was a Graduate Student Researcher from 1985 to 1989 working on signal and image processing projects. Currently, he is a Associate Professor and an Associate Director of the Center for Clinical Neurophysiology in the Department of Neurosurgery at the University of Pittsburgh, and a Director of Research at Computational Diagnostics, Inc. His current research and development interests include advanced biomedical electronic devices, biomedical signal and image processing, sensors and transducers, biomedical instruments, artificial neural networks, wavelet transforms, time-frequency analysis, and the inverse problem of neurophysiological signals. He has over 160 publications in these areas. Qiang Liu received his B.S. and M.S. degrees in electrical engineering from Xidian University, Xian, China, in 1996 and 1999 respectively. He is currently a Ph.D. student at the University of Pittsburgh, Pittsburgh, USA. His further research interests include biomedical signal processing, medical imaging, and image/video segmentation, coding and transmission. Robert J. Sclabassi received the B.S.E. degree from Loyola University, Los Angeles, the M.S.E.E., Engineer in Electrical Engineering, and Ph.D. degrees in electrical engineering from the University of Southern California, and the M.D. degree from the University of Pittsburgh. He was employed in the Advanced Systems Laboratory at TRW, Los Angeles, and was a postdoctoral fellow at the Brain Research Institute at the University of California, Los Angeles. He was on the faculties of Department of Neurology and Biomathematics at UCLA until he joined the University of Pittsburgh. Dr. Sclabassi is currently a Professor of Neurological Surgery, Psychiatry, Electrical Engineering, Mechanical Engineering, Psychiatry, and Behavioral Neuroscience at the University of Pittsburgh. Dr. Sclabassi has published over 400 papers, chapters and conference proceedings. Dr. Sclabassi is a Registered Professional Engineer.  相似文献   

13.
Hafnium-based dielectrics are the most promising material for SiO2 replacement in future nodes of CMOS technology. While devices that utilize HfO2 gate dielectrics suffer from lower carrier mobility and degraded reliability, our group has recently reported improved device characteristics with a modified HfxZr1−xO2 [R.I. Hegde, D.H. Triyoso, P.J. Tobin, S. Kalpat, M.E. Ramon, H.-H. Tseng, J.K. Schaeffer, E. Luckowski, W.J. Taylor, C.C. Capasso, D.C. Gilmer, M. Moosa, A. Haggag, M. Raymond, D. Roan, J. Nguyen, L.B. La, E. Hebert, R. Cotton, X.-D. Wang, S. Zollner, R. Gregory, D. Werho, R.S. Rai, L. Fonseca, M. Stoker, C. Tracy, B.W. Chan, Y.H. Chiu, B.E. White, Jr., in: Technical Digest - International Electron Devices Meet, vol. 39, 2005, D.H. Triyoso, R.I. Hegde, J.K. Schaeffer, D. Roan, P.J. Tobin, S.B. Samavedam, B.E. White, Jr., R. Gregory, X.-D. Wang, Appl. Phys. Lett. 88 (2006) 222901]. These results have lead to evaluation of X-ray reflectivity (XRR) for monitoring high-k film thickness and control of Zr addition to HfO2 using measured film density. In addition, a combination of XRR and spectroscopic ellipsometry (SE) is shown to be a fast and non-intrusive method to monitor thickness of interfacial layer between high-k and the Si substrate.  相似文献   

14.
现代通信网络应能满足各种通信业务和通信容量日益发展的需求,实现话音、数据、视频、IP等业务的一体化综合交换和传输。在比较TDM、IP和ATM三种协议的基础上,提出"采用内置RPR和MPLS功能的MSTP平台"建设光纤综合通信网络平台的实现方法。MSTP采用SDH的数据帧结构,保持了SDH标准光接口、灵活分插低速信号、自愈环保护和功能强大的网管等优点,可对TDM、IP和ATM协议进行优化传输。  相似文献   

15.
Adhering hydrogels to various materials is fundamental to a large array of established and emerging applications. The last few years have seen transformative advances in achieving strong hydrogel adhesion, which is a supramolecular phenomenon. Two adherends connect through covalent bonds, noncovalent complexes, polymer chains, polymer networks, or nanoparticles. Separating the adherends dissipates energy through cascading events across length scales, including bond cleavage, chain retraction, and bulk hysteresis. A unifying principle has emerged: strong hydrogel adhesion requires the synergy of chemistry of bonds, topology of connection, and mechanics of dissipation. This synergy characterizes hydrogel adhesion to various materials (another hydrogel, tissue, elastomer, plastic, metal, glass, and ceramic) in various operations (cast, coat, print, attach, pierce, and glue). Strong adhesion can be made permanent, reversible, degradable, or on‐demand detachable. The development of hydrogel adhesion and its applications adheres disciplines, discovers interlinks, and forges cohesion. Discussed throughout the review are immediate opportunities for fundamental studies and practical applications.  相似文献   

16.
微电子封装的新进展领域及对SMT的新挑战   总被引:2,自引:0,他引:2  
介绍了几种微电子新型封装材料,如LTCC、AIN、金刚石、AI-Sic和无铅焊接材料等,论述了正在发展中的新型先进封装技术,如WLP、3D和SIP等,并对封装新领域MEMS和MOEMS作了简介.最后,就这些新技术对SMT的新挑战作了些探讨.  相似文献   

17.
Global consensus on the next generation of wireless mobile communications, broadly termed “beyond 3G”, sketches a heterogeneous infrastructure comprising different wireless systems in a complementary manner and vested with reconfiguration capabilities, which support a flexible and dynamic adaptation of the wireless network and its spectrum resources to meet the ever-changing service requirements. For ubiquitous reconfiguration to become a practical capability of mobile communication systems, it is necessary to establish a global architecture for modeling, expressing, and circulating essential metadata related to reconfiguration, including reconfigurable device capabilities and semantic properties of protocol stacks. We outline the relevant standardization initiatives in the mobile domain, summarize existing work in reconfiguration-supporting architectures, and identify key shortcomings that may hinder the advent of ubiquitously reconfigurable systems. Further on, we point out some major limitations of current metadata standards in the mobile domain for the representation of capability information pertaining to reconfigurable protocol stacks. Next, we identify essential metadata classes in support of reconfigurable communication systems, introducing an associated object-oriented UML model. We elaborate on the design rationale of the UML model, presenting and discussing the alternative metadata representation standards and suitable encoding formats. Finally, we demonstrate the suitability of our UML model by applying our reconfiguration-supporting vocabulary in the cases of a standardized protocol stack of 3G mobile devices and stationary 3G cellular network elements. Vangelis Gazis received his B.Sc. and M.Sc. (Communication Networking) degrees from the Department of Informatics & Telecommunications of the University of Athens, Greece, in 1995, and 1998, respectively. He also received an M.B.A. degree from the Athens University of Economics and Business in 2001. Since 1996 until, he has been with the research staff of the Communication Networks Laboratory (CNL) of the University of Athens. He has participated in national and European research projects (MOBIVAS, ANWIRE) of the IST framework programme. He specializes in reconfigurable mobile systems and networks for beyond 3G, metadata and ontology languages, reflective and component middleware, adaptable services and open API frameworks for telecommunications. He is currently a Ph.D. candidate in the Department of Informatics & Telecommunications of the University of Athens. Nancy Alonistioti holds a B.Sc. degree and a Ph.D. degree in informatics and telecommunications from the University of Athens. Presently, she is a senior researcher in the Department of Informatics and Telecommunications of the University of Athens. In the past, she has held a research position with the Institute of Informatics and Telecommunications of NCSR “Demokritos” in the areas of protocol and service design and testing, mobile systems (UMTS), open architectures, and software defined radio systems and networks. Her current research interests are in reconfigurable mobile systems and networks beyond 3G, and adaptable services, pervasive computing and context awareness. She has participated in several national and European R&D projects, and has been the technical manager of the IST-MOBIVAS and IST-ANWIRE projects, which have had a focus on reconfigurable mobile systems, networks an respective service provision. She is currently a member of the management team and workpackage leader in the FP6 IST-E2R project on reconfigurability; she also serves as technical manager for the University of Athens in the FP6 IST-LIAISON project, which focuses on location based services in working environments. Dr Alonistioti is co-editor and co-author of the book entitled “Software defined radio, Architectures, Systems and Functions”, published by John Wiley in May 2003. She has authored over 55 publications in the area of mobile communications and reconfigurable systems and networks. Lazaros Merakos received the Diploma in electrical and mechanical engineering from the National Technical University of Athens, Athens, Greece, in 1978, and the M.S. and Ph.D. degrees in electrical engineering from the State University of New York, Buffalo, in 1981 and 1984, respectively. From 1983 to 1986, he was on the faculty of the Electrical Engineering and Computer Science Department, University of Connecticut, Storrs. From 1986 to 1994, he was on the faculty of the Electrical and Computer Engineering Department, Northeastern University, Boston, MA. During the period 1993D1994, he served as Director of the Communications and Digital Processing Research Center, Northeastern University. During the summers of 1990 and 1991, he was a Visiting Scientist at the IBM T. J. Watson Research Center, Yorktown Heights, NY. In 1994, he joined the faculty of the University of Athens, Athens, Greece, where he is presently a Professor in the Department of Informatics and Telecommunications, and Director of the Communication Networks Laboratory (UoA-CNL) and the Networks Operations and Management Center. Since 1995, he is leading the research activities of UoA-CNL in the area of mobile communications, in the framework of the Advanced Communication Technologies and Services (ACTS) and Information Society Technologies (IST) programs funded by the European Union (projects RAINBOW, Magic WAND, WINE, MOBIVAS, POLOS, ANWIRE, E2R, LIAISON). His research interests are in the design and performance analysis of communication networks, and wireless/mobile communication systems and services. He has authored more than 190 papers in the above areas. Dr. Merakos is Chairman of the Board of the Greek Universities Network, the Greek Schools Network, and Member of the Board of the Greek Research Network. In 1994, he received the Guanella Award for the Best Paper presented at the International Zurich Seminar on Mobile Communications.  相似文献   

18.
新一代MSTP的关键技术和发展方向   总被引:3,自引:0,他引:3  
目前,基于同步数字体系(SDH)的多业务传送平台(MSTP)在国内已成为城域汇聚层和接入层的主流技术。为了进一步增强数据处理能力,更好地与数据网络结合,新技术和新功能层出不穷。随着通用成帧规程(GFP)、虚级联(VCat)、链路容量调整(LCAS)、弹性分组环(RPR)、多协议标签交换(MPLS)、自动交换光网络(ASON)等技术国际标准的相继推出,新一代MSTP设备将逐步采用这些核心技术,面对新时期城域网IP业务大量兴起,MSTP逐步从简单透传、汇聚、共享发展到带宽管理,具备面向数据优化的传送能力。文中对新一代MSTP的关键技术进行讨论,着重分析这些新技术在MSTP中的功能和应用,并探讨新一代MSTP的发展方向。  相似文献   

19.
One of the most important and challenging issues in the design of personal communication service (PCS) systems is the management of location information. In this paper, we propose a new fault-tolerant location management scheme, which is based on the cellular quorum system. Due to quorum's salient set property, our scheme can tolerate the failures of one or more location server(s) without adding or changing the hardware of the systems in the two-tier networks. Meanwhile, with a region-based approach, our scheme stores/retrieves the MH location information in the location servers of a quorum set of the local region as much as possible to avoid long delays caused by the possible long-distance of VLR and HLR. Thus, it yields better connection establishment and update delay. Ming-Jeng Yang received the M.S. degree in computer science from the Syracuse University, New York, in 1991, and the Ph.D. degree in computer science from National Taiwan Normal University, Taiwan, in 2004. He is an associate professor in the Department of Information Technology, Takming College, Taiwan. His research interests include wireless networks, mobile computing, fault-tolerant computing, and distributed computing. He is a member of the IEEE Computer Society and the ACM. Yao-Ming Yeh received the B.S. degree in computer engineering from National Chiao-Tung University, Taiwan, in 1981, and the M.S. degree in computer science and information engineering from National Taiwan University, Taiwan, in 1983. In August 1991, he received the Ph.D. degree in the Department of Electrical and Computer Engineering, The Pennsylvania State University, Pa., U.S.A. He is a professor in the Department of Information and Computer Education, National Taiwan Normal University, Taiwan. His research interests include fault-tolerant computing, web and XML computing, and distributed computing.  相似文献   

20.
孙忠贵  高新波  张冬梅  李洁  王颖 《电子学报》2018,46(8):1969-1975
近年,形态学非局部拓展工作在图像处理领域受到众多关注.而附益性算子是经典形态学的最基本形式,也是形态学分析方法最重要的变换工具.为此,一些研究者就形态学非局部拓展中如何保持算子的附益性开展工作.本文从理论及实例两个方面说明,相关拓展工作为保持算子的附益性而丢失了保序性的不足;进一步,通过设计非局部权值的获取过程,并结合现有工作,本文提出了一个新的形态学非局部拓展,并定理证明了所得算子同时具备附益性及保序性两个重要性质;人工合成图像及自然图像上的仿真实验也表明了本文所提算法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号