首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用盐浴加热循环淬火和高频感应加热淬火对T10A钢进行组织超细化预处理,然后在恒温压缩变形条件下进行超塑性研究。试验表明,在710~770℃、初始应变速率10^-4~10^-3s^-1的变形条件下,该钢的σ-ε曲线具有明显的超塑流变特征,稳态流变应力仅40MPa左右,应变速率敏感性指数可达0.5,变形激活能为183~194kJ/mol,与α—Fe晶界自扩散激活能接近。高频淬火较循环淬火有更好的组织细化效果,因而高频淬火预处理后的超塑性流变特征更明显。本试验为该钢的超塑成形和超塑性固态焊接提供了工艺和理论分析依据。  相似文献   

2.
对不同温度下退火处理后的细晶TC4合金板材进行超塑性拉伸变形,研究该合金在750~850℃,应变速率为3×10-4~1×10-3 s-1条件下的超塑性拉伸变形行为,分析晶粒尺寸、变形温度和β相含量对合金性能的影响。结果表明:退火后的(α+β)型细晶Ti-6Al-4V合金表现出良好的超塑性,并且晶粒越细,最佳超塑性变形温度越低。晶粒直径为2.5μm、β相含量(体积分数)为9.6%的TC4合金在温度为800℃、应变速率为1×10-3 s-1的变形条件下,伸长率最大,达到862%。不同晶粒度合金的应变速率敏感系数m均随变形温度升高先上升后下降,最高达0.61。β晶粒处于α晶粒三叉晶界处,升温或拉伸变形时聚集并沿α晶界长大,形成细长的β晶粒并逐渐变粗大,因此在900℃以上高温下合金的超塑性变形能力降低。  相似文献   

3.
采用应变速率递增实验研究有序金属间化合物Ti-48Al-2.3Cr-0.2Mo(原子分数,%)在800~1 100℃范围内的超塑性变形力学行为,在实验观察的基础上,对超塑性变形的状态方程进行分析。结果表明,在800~900℃和950~1 100℃区间,合金的应力、应变速率、温度、晶粒尺寸间的关系发生改变,在800~900℃区间,应变速率敏感性因子m的最佳值在0.52~0.67之间,表观激活能为Qapp=178 kJ/mol,为晶界扩散激活能,晶粒尺寸因子P=3;在950~1 100℃区间,m的最佳值为0.63~0.77,Qapp=290 kJ/mol,为体积扩散激活能,P=2。经实验拟合,得到TiAl合金超塑性变形的经验状态方程:在800~900℃区间,5.47×107×(σ/E)2(bDgb/d3);在950~1 100℃区间,1.29×108×(σ/E)2(DL/d2),与O D Sherby等在无序合金中观察到的现象相符,其超塑性变形的动力学因子仅比无序合金的动力学因子小约1个数量级,说明有序合金的结构有序性对超塑性变形速率影响不大。  相似文献   

4.
研究了置氢0.11%的Ti-6Al-4V在800~900℃温度范围和3×10(-4)~1×10(-2)s(-1)应变速率范围内的超塑变形行为,应用光学显微镜研究了变形过程中的组织演变.结果表明:置入0.11%的氢能够显著改善Ti-6Al-4V超塑变形行为,峰值应力较原始合金降低了15~33 MPa,应变速率敏感性指数m值提高至0.497,变形激活能为322 kJ·mol(-1);在840~860 ℃温度范围和3×10(-3)~1×10(-3)s(-1)应变速率范围内,具有最佳超塑性,其延伸率最高达到1530%.0.11%的氢使α相及β相软化的同时促进了动态再结晶,提高了位错的攀移能力并且降低了位错密度;α和β两相比例未发生显著变化,适当的比例在变形过程中有利于两相相互抑制长大.置氢后超塑变形机制与未置氢相同,主要为界面的滑动和晶粒的转动,而位错的运动及动态再结晶为其协调机制.  相似文献   

5.
研究了真空环境中TA32钛合金板材在温度950℃、应变速率5.32×10^-4~2.08×10^-2 s^-1条件下的超塑性变形行为。结果表明,在不同应变速率条件下,合金的流变应力曲线特征和显微组织演变显著不同。在应变速率较低(5.32×10^-4~3.33×10^-3 s^-1)条件下,拉伸真应力-真应变曲线呈传统超塑变形的稳态流动特征,变形后的合金中初生α相晶粒尺寸较大;在高应变速率(8.31×10^-3 s^-1~2.08×10^-2 s^-1)条件下,拉伸真应力-真应变曲线中流变应力增大到峰值后快速单调递减直至试样断裂,合金变形过程中初生α相发生动态再结晶,晶粒尺寸较低应变速率条件下显著细化。950℃时,TA32钛合金板材均具有超塑性变形能力,超塑性延伸率在145%~519%之间;当应变速率为5.32×10^-4 s^-1时,具有最佳的超塑性,拉伸延伸率可达519%。断裂区形貌分析发现,TA32钛合金板材的超塑性断裂模式为空洞聚集-连接-长大型断裂。  相似文献   

6.
《钛工业进展》2018,35(5):8-14
采用Gleeble-3800热模拟压缩试验机研究了高氧TC4钛合金在温度为990~1 030℃、应变速率为0. 01~1. 0 s~(-1)、变形量为60%时的变形行为及微观组织特征,并构建了该合金的本构方程。结果表明,高氧TC4钛合金在β单相区变形时随着应变速率的增加和变形温度的降低,其流动应力显著增加,该合金在β相区的变形激活能为141 kJ/mol。在990~1 030℃加热温度下,原始β晶粒尺寸在250~255μm范围内,晶粒尺寸对温度不敏感。随着应变速率的增大,原始β晶粒沿着垂直于压缩轴方向被拉长,在被拉长的原始β晶界上可观察到β再结晶晶粒。  相似文献   

7.
变形态Mg-Nd合金的超塑变形行为   总被引:2,自引:1,他引:1  
研究变形态Mg 2 .5Nd 0 .5Zn 0 .5Zr合金的超塑变形行为发现 ,3 75℃是该合金的最佳超塑变形温度 ,变形速率在 1× 10 - 2 s- 1 时延伸率达到 3 2 9%;当变形速率提高到 2× 10 - 2 s- 1 时 ,该合金的延伸率仍可达到 2 13 %。分析不同真应变下的组织发现 ,晶粒在变形初期发生动态再结晶 ,晶粒得到破碎而变得细小 ,随着变形程度的增加 ,晶粒长大程度较小  相似文献   

8.
研究了温度为920~1080℃、初始应变速率为2×10~(-2)s~(-1)~10~(-4)s~(-1)条件下的原位自生 TiB 和 TiC 增强钛基复合材料的超塑变形行为。试验得到429%的最大延伸率,计算所得最大 m 值为0.47,但这两者并不是在同一试验中取得。在变形过程中,m 值随应变增加而增大,达到最大值后,m 值随应变增加而减小。在920~1040℃和1040~1080℃温度范围内,激活能分别为492kJ/mol、673kJ/mol 和275kJ/mol,表明变形受不同机制控制。在1040~1080℃,变形受晶界扩散控制;而在920~1040℃,除晶界扩散外,位错运动和动态再结晶在变形中占了主导作用。  相似文献   

9.
利用Gleeble-1500热模拟实验机研究了新型Ti-6Cr-5Mo-5V-4Al合金在740~950℃,应变速率0. 01~10. 00 s~(-1)条件下的热变形行为。通过真应力-真应变曲线分析了合金在高温变形时的应力随温度及应变速率的变化规律,之后对数据进行回归分析得到了合金的本构方程,最后绘制合金的热加工图并结合微观组织观察研究该合金的热变形机制。结果如下:合金的流变应力对温度和应变速率都十分敏感。在相同的应变速率下,随温度升高,流变应力降低;而在相同温度下,应变速率升高,流变应力也升高。计算得到合金的动态激活能Q为246. 551 kJ·mol~(-1)。高温变形的本构方程为ε=4. 51×10~(10)[sinh(0. 0058σ)]~(4. 85272)exp(-246551/RT)。根据热加工图可知,两相区变形时,合金在温度740~770℃、应变速率0. 01~0. 03 s~(-1)的区域内具有最高的功率耗散系数,达到44%,变形机制为动态回复;β单相区变形时,在温度780~890℃、应变速率0. 01~0. 03 s~(-1)的区域内具有较高的功率耗散系数,为40%,变形机制包括动态回复和动态再结晶。合金的塑性失稳区主要在温度740~900℃、应变速率0. 05~1. 00 s~(-1)的区域内,失稳区内会发生局部塑性流动。  相似文献   

10.
彭建  韩韡  彭毅  潘复生 《稀有金属》2014,(3):341-347
采用热扭转试验机对ME21镁合金在300~450℃、等效应变速率0.0100~0.0001 s-1范围内进行扭转试验,研究合金的热变形行为,利用Zener-Hollomon参数法通过数学分析构建了ME21合金基于热扭转试验的高温塑性变形的本构方程。结果表明:ME21镁合金在扭转温度450℃,等效应变速率0.01 s-1时,合金在断裂前的扭转圈数可以达到2.5圈,等效应变可达到1.1以上,在此种工艺下可以获得较高的热加工塑性。ME21镁合金在不同温度和不同应变速率下的热扭转过程中,硬化与软化的同时作用使得其流变过程的应力-应变曲线差异较大,扭转变形后均可得到再结晶组织,但是组织的差异也较大,再结晶晶粒尺寸取决于温度补偿应变速率参数Z的大小。合金本构方程为σ=1/0.03159ln{(Z1.547×106)1/2.4302+[(Z/1.547×106)2/2.4302+1]1/2},以此计算的流变应力的预测值与试验值相对误差平均值小于5%。ME21合金热扭转的变形激活能为Q=117.34 kJ·mol-1。  相似文献   

11.
采用高温拉伸试验研究了GH3230合金在温度1144~1273 K、应变速率1×10-3~1×10-1s-1条件下的热变形行为。计算了变形激活能,并采用Zener-Hollomon参数法构建合金的高温变形的本构关系。结果表明:温度和应变速率对GH3230合金的高温力学性能有显著影响,流变应力随变形温度的升高而降低,随着应变速率的增加而升高。GH3230合金的高温流变行为可用Zener-Hollomon参数的双曲正弦函数来描述,热变形材料常数为:A=5.179×1016s-1,a=0.0088,n=3.9893,并计算出合金的平均变形激活能Q=455.203 k J·mol-1,且变形激活能更容易受到应变速率的影响。扫描电镜(SEM)断口分析表明GH3230合金在高温下(1144~1273 K)应变率范围为1×10-3~1×10-1s-1时的拉伸断裂都是由损伤引起的韧性断裂,且温度对断口形貌影响不大,但应变速率增大会使韧窝尺寸和深浅变小。  相似文献   

12.
利用Gleeble-1500热模拟实验机,对2524铝合金进行高温等温压缩试验,实验变形温度为300~500℃,应变速率为0.01~10 s-1的条件下,研究了2524铝合金的流变变形行为。结果表明:合金流变应力的大小跟变形温度和应变速率有很大关联,2524铝合金真应力-应变曲线中,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复特征,而峰值流变应力随变形温度的降低和应变速率的升高而增大;在流变速率ε为10 s-1,变形温度300℃以上时,应力出现锯齿波动,合金表现出动态再结晶特征。采用温度补偿应变速率Zener-Hollomon参数值来描述2524铝合金在高温塑性变形流变行为时,其变形激活能Q为216.647 kJ/mol。在等温热压缩形变中,合金可加工条件为:高应变速率(>0.5 s-1)或低应变速率(0.01 s-1~0.02 s-1)、高应变温度(440℃~500℃)。  相似文献   

13.
生物医用Ti-6Al-7Nb合金高温变形行为研究   总被引:2,自引:0,他引:2  
金哲  张万明 《稀有金属》2012,36(2):218-223
为了研究用于外科植入生物材料Ti-6Al-7Nb合金的热变形行为,利用Gleeble 2000热模拟实验机对Ti-6Al-7Nb合金在750~900℃温度范围和0.001~10.000 s-1应变速率范围内进行等温热压缩实验,试验在氩气保护下进行,采用金相显微镜和透射电镜观察热变形后的组织;通过计算变形激活能分析Ti-6Al-7Nb合金在热压缩过程中的变形机制。结果表明:流变应力在经历加工硬化阶段后均表现出流变软化现象,在较低应变速率ε=0.001~0.100 s-1时,材料的软化主要受α相动态再结晶影响;而在较高应变速率ε=1~10 s-1时,材料基本不发生再结晶,其软化是由于钛合金在变形过程中的绝热效应造成的。通过Arrhenius方程计算出合金在750,800,850和900℃下的变形激活能分别为209.25,196.01,194.01和130.40 kJ.mol-1;在750~850℃下的激活能接近于α-Ti的自扩散激活能(200 kJ.mol-1),表明在750~850℃的变形由α-Ti自扩散参与的动态再结晶控制;在900℃下激活能略低于β-Ti的自扩散激活能(160 kJ.mol-1),说明在900℃下的变形机制由β相的动态回复控制。综合考虑变形行为与组织细化因素,温度在750~850℃,变形速率在0.01~0.10 s-1范围为良性热加工区域。  相似文献   

14.
在Gleeble-1500热模拟机上,采用高温等温压缩,在应变速率为0.001~10 s-1和变形温度为300℃~500℃条件下对5052铝合金的流变应力行为进行了研究。结果表明:在应变速率为0.1 s-1(变形温度为420℃~500℃)以及应变速率为0.01和0.001(变形温度为300℃~500℃)时,5052铝合金热压缩变形出现了明显的峰值应力,表现为连续动态再结晶特征;在其他变形条件下存在较为明显的稳态流变特征。可采用Zener-Hol-lomon参数的双曲正弦函数来描述5052铝合金高温变形时的流变应力行为;在获得的流变应力σ解析表达式中A、α和n值分别为12.68×1011s-1,0.023MPa-1和5.21;其热变形激活能Q为182.25 kJ/mol。  相似文献   

15.
在Thermecmastor-Z动态热模拟试验机上对Ti-43Al-4Nb-1.4W合金进行高温压缩变形实验,实验温度范围为1 050~1 150℃,应变速率范围为0.001~1 s 1。根据该合金的真应力-真应变曲线,建立合金高温变形的本构方程和热加工图,并对不同变形区域的组织进行分析。结果表明:Ti-43Al-4Nb-1.4W合金高温压缩变形峰值应力与变形条件的关系可用双曲正弦函数来表示,其变形激活能为567.05 kJ/mol,高温变形的本构方程为:ε=3.37×1018.[sinh(0.0043σ)]3.27exp[567.05/(RT)];加工图显示该合金最佳加工区域的应变速率为0.001~0.01 s 1(η范围在40%~55%),在此加工区域内合金发生较明显的动态再结晶和β相的球化。  相似文献   

16.
龚志华  何禛  包汉生  杨钢 《钢铁》2019,54(3):63-68
 为了解决2Cr12NiMo1W1V耐热钢在锻造过程中晶粒粗大和组织不均匀的问题,利用Gleeble-3800热模拟试验机,在变形温度为1 000~1 200 ℃、应变速率为0.01~10 s-1、变形量为70%的条件下,研究和分析了2Cr12NiMo1W1V耐热钢的高温塑性变形和动态再结晶行为。结果表明,该耐热钢的真应力-应变曲线具有动态再结晶特征。再结晶晶粒尺寸随着变形温度的增加或应变速率的降低呈增加趋势,在变形温度为1 150~1 200 ℃,应变速率为0.01 s-1时,晶粒尺寸急剧增加。在真应力-应变曲线的基础上,建立了材料热变形本构方程,其热激活能为453.74 kJ/mol。根据峰值应力绘制了合金的热加工图并获得在各加工条件下的效率值,合金的最佳热加工区间为变形温度为1 000~1 150 ℃、应变速率为0.1~1 s-1以及变形温度为1 060~1 125 ℃、应变速率为0.1~10 s-1。  相似文献   

17.
利用热模拟机对TC17钛合金进行等温压缩试验,变形温度范围为770~950℃,应变速率范围为1×10~(-2)~1×10~1 s~(-1),研究具有片状初始α相组织的TC17合金在α+β两相区和β单相区热变形行为。结果表明,TC17合金有两种不同的流变软化现象,在α+β两相区,高应变速率以及低应变速率下变形时均出现持续软化行为;在β单相区,流变应力达到峰值后迅速降低到一个稳定值,在高应变速率下表现出明显的不连续屈服现象,随后出现振荡,而在低应变速率下真应变对流变应力的影响很小,表现出稳定的流变行为;用Arrhenius正弦方程构建流变应力与变形温度、应变速率的关系,发现α+β两相区的形变激活能随应变的增加从670.1 kJ·mol~(-1)下降到370.1 kJ·mol~(-1),在β单相区,随着应变的增加,形变激活能从301.4 kJ·mol~(-1)下降到239.3 kJ·mol~(-1);TC17合金在α+β两相区的变形机制都是动态再结晶(球化),在β单相区变形时,高应变速率下的主要变形机制是动态回复,而低应变速率下为β相动态再结晶。  相似文献   

18.
研究了铸轧AZ31镁合金的高温拉伸性能和变形机制.在300~450℃条件下,分别以恒定拉伸速率10-3 s-1和10-2 s-1进行拉伸至失效试验,在真实应变率为2×10-4~2×10-2 s-1的范围内进行变应变率拉伸试验.当拉伸速率为10-2s-1时,试样在400℃和450℃的延伸率均超过100%;当拉伸速率为10-3 s-1时,试样在400℃和450℃的延伸率均超过200%,该条件下的应力指数n≈3,蠕变激活能Q=148.77 kJ·mol-1,变形机制为溶质牵制位错蠕变和晶界滑移的协调机制.通过光学金相显微镜和扫描电子显微镜观察显示试样断口处存在由于发生动态再结晶和晶粒长大而形成的粗大晶粒,断裂形式为空洞长大并连接导致的韧性断裂.   相似文献   

19.
研究连铸镁合金AZ31单向拉伸行为.结果表明在300~450℃,应变速率ε低于1.0×10-3 s-1的情况下,镁合金ZA31开始表现出超塑性.在400℃,应变速率ε为4.25×10-4 s-1时,延伸率达到了200%,应变速率敏感性指数m为0.41.用光学显微镜观察了变形前后的拉伸式样的微观组织,表明试样的初始晶粒尺寸约为20μm,在变形之后颈缩区域的晶粒长大现象不是很明显,晶粒沿着变形方向有所伸长,但晶粒形状基本保持为等轴状.  相似文献   

20.
利用变形温度为1120~1210℃、应变速率为0.1~20 s-1以及变形量为15%~60%的等温热压缩实验研究了GH4700合金的热变形行为.通过对低温和高应变速率条件下的形变热效应进行修正,得到准确的流变曲线,推导出描述峰值应力与温度和应变速率等变形参数的本构方程,并得到GH4700合金热变形表观激活能为322 kJ.组织分析表明,动态再结晶是热变形过程中最主要的软化方式,再结晶形核方式为应变诱发晶界迁移,变形温度升高和应变速率增大均有利于再结晶形核.再结晶发展阶段,随着变形量的增大和变形温度的升高,动态再结晶比例增加,在应变速率-温度坐标中,再结晶比例等值线呈反"C"形式.采用分段函数描述了不同应变速率下GH4700合金动态再结晶晶粒尺寸与变形参数的关系.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号