首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《功能材料》2021,52(1)
利用"冷压成型-真空烧结法"制备了碳化钨/高强钢复合材料。结合光学显微镜、扫描电镜、超高温激光共聚焦显微镜和显微硬度计等分析测试手段对不同碳化钨(WC)颗粒粒径下获得的复合材料以及界面的显微组织和硬度进行了分析。实验结果表明,WC粉末颗粒粒径越小,WC平均晶粒尺寸越小;同时,WC致密度越高,当WC粉末颗粒粒径为100 nm,致密度达到91.22%;WC粉末颗粒粒径越小,复合材料中WC一侧的硬度越高。当WC粉末颗粒粒径为100 nm,烧结温度为1 320℃时,WC最高硬度值达1 680HV_(0.1)左右;且在靠近结合界面处WC硬度较其他位置更高;芯部的高速钢材料随WC颗粒粒径的变化不大,都在500HV_(0.1)左右。当WC粉末颗粒粒径为200 nm时,碳化钨与高强钢在界面处形成了一定宽度的过渡层,复合材料的结合为冶金结合;高强钢基体中的铁元素扩散到接触的碳化钨组织中,产生了一定宽度的熔合层,复合材料界面结合相对较好。在过渡区域内,W、Fe和Co元素在界面处都发生了明显的扩散;随着碳化钨颗粒粒径的增大,元素扩散趋势减弱。当WC粉末颗粒粒径为500 nm时,在复合材料界面处Fe元素和W元素未发生明显扩散现象,只有Co元素发生了一定程度的扩散。  相似文献   

2.
WC在WC/灰铸铁复合材料基体中的溶解   总被引:6,自引:1,他引:5       下载免费PDF全文
为了对WC/Fe复合材料的界面设计和控制提供理论指导, 论文分析了WC在WC/灰铸铁复合材料基体中的溶解热力学, 通过差热分析、 光学显微镜、 扫描电镜和X衍射等测试方法研究了WC与灰铸铁基体之间的界面, 对WC颗粒在基体中的溶解过程进行了探讨。研究结果表明: WC颗粒与HT300基体润湿良好, 当系统最高温度为1450℃时, WC颗粒的表面有明显被溶解的痕迹, WC颗粒在HT300基体溶液中发生明显溶解的开始温度约为1281℃; 当系统温度升高到某一温度时, WC发生分解反应(2WCW2C+C), 元素扩散将促进WC颗粒的溶解。   相似文献   

3.
MAX相具有独特的层状晶体结构,不但具备常用铝基复合材料外加陶瓷颗粒的性能特征,同时具有可与石墨媲美的摩擦性能.本文以Al粉、Si粉和典型MAX相Ti_3SiC_2为原料,采用冷压成型-无压烧结方法制备了Ti_3SiC_2/Al-Si复合材料,并通过金相显微镜、X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)等分析手段,研究了烧结温度、Si元素含量对复合材料组织与性能的影响.研究表明:随着烧结温度从500℃提高到700℃,复合材料致密度先上升后下降,摩擦系数先降低后上升,硬度逐渐增大至最大值并基本保持稳定;随着Si质量分数从0增加到20.7%,复合材料的致密度逐渐降低,硬度逐渐增大,摩擦系数先降低后增大,晶粒尺寸随之下降,12.5%Si晶粒最为细小;烧结温度为650℃,Si元素质量分数为12.5%的铝基复合材料具有最低的摩擦系数0.18,相应的硬度为62 HV,致密度为92.12%.XRD物相和扫描电镜组织分析表明,复合材料的主要相组成为Al、Ti_3SiC_2,及由界面反应产生的Al_4C_3和Al的氧化产物Al_2O_3.  相似文献   

4.
采用放电等离子烧结技术制备了WC质量分数为40%的WC/Fe复合材料,研究了不同烧结温度条件下WC/Fe复合材料的致密度、组织、硬度及干摩擦磨损性能。利用SEM和XRD分析了不同烧结温度条件下存在的物相;采用销-盘摩擦磨损试验机(盘试样选用~80μm的Al2O3砂纸,滑动距离约为950m)测量了马氏体耐磨钢和WC/Fe复合材料在不同载荷下相对磨损率;用SEM观察磨损形貌,确定WC/Fe复合材料的磨损机制。结果表明:烧结温度为1080℃时,WC/Fe复合材料实现完全致密,WC陶瓷颗粒均匀分布在基体中并与基体界面结合良好;随着WC/Fe复合材料完全致密化,其硬度及耐磨性能逐渐提高;WC/Fe复合材料的耐磨性能远优于马氏体耐磨钢。WC/Fe复合材料磨损机制主要为氧化磨损和磨粒磨损。在低载荷条件下,颗粒脱离基体造成氧化膜破裂,促使材料表面受损;较高载荷条件下,WC陶瓷颗粒破碎加速氧化膜破裂,加快了材料的磨损。  相似文献   

5.
为了有效控制烧结过程中WC晶粒的长大,获得高强度高硬度的超细硬质合金,采用扫描电镜、拉伸机和洛氏硬度仪研究了不同质量分数及配比的VC/Cr3C2晶粒长大抑制剂和烧结温度对超细WC-12Co硬质合金的显微组织及力学性能的影响,并结合试验结果分析了超细硬质合金中VC/Cr3C2晶粒长大抑制剂的作用机理.结果表明,添加适量VC/Cr3C2晶粒长大抑制剂的超细硬质合金中WC晶粒尺寸分布集中,不存在明显的组织缺陷,合金具有细而均匀的微观组织及优异的力学性能.当晶粒长大抑制剂(质量分数)为0.2%VC/0.5%Cr3C2,1450℃烧结制备WC-12Co超细硬质合金的抗弯强度为3710MPa,硬度(HRA)为91.5.VC/Cr3C2晶粒长大抑制剂的作用机理为:VC主要与WC反应生成(W,V)C固溶体聚集在WC/Co界面,降低WC/Co界面能,Cr3C2主要固溶在粘结相中,导致WC在粘结相中的溶解度降低,二者的综合作用减缓了粘结相中WC溶解-析出过程,从而抑制烧结过程中WC晶粒的长大.  相似文献   

6.
在高压条件下制备出了晶粒尺寸为30nm左右的La0.8Sr0.2MnO3块状材料.采用X射线衍射仪(XRD)和场发射扫描电子显微镜(FESEM)对高压样品的相组成、晶粒尺寸及微观形貌进行了表征;利用显微拉曼光谱仪测量了不同压力下制备出的块状样品在激光功率为400mW时位于100~3000cm-1之内的拉曼光谱.结果表明,高压烧结时样品的晶粒演化受温度和压力的共同影响:300℃以下时,1~3GPa烧结的样品晶粒生长速度随压力的升高而增大,4~5GPa烧结的样品其晶粒生长速度随压力的升高而减小;300℃以上时,其晶粒生长速度随压力和温度的升高而不断增大.测量了高压烧结后纳米La0.8Sr0.2MnO3块状材料的各种物理性能,结果表明,高压烧结后该材料的显微硬度显著提高;当烧结温度为300℃时,不同压力下制得的样品的电阻率随压力的升高呈先减小后增大的趋势;5GPa,300℃时制出的样品在室温下呈典型的铁磁性能.  相似文献   

7.
热挤压法成型的卤化银多晶光纤,经不同温度热处理后,光纤的显微结构发生了变化.扫描电镜形貌分析结果显示,热处理温度T≤170℃,显微结构未发生变化,晶粒尺寸12.T=200℃时,晶粒尺寸10~20μm;T=250℃时,晶粒尺寸20~30μm;T=300℃时,晶粒尺寸30~40μm.光纤显微硬度测量结果也显示,热处理温度>170℃后,光纤的显微硬度随热处理温度的升高而降低,在200℃附近硬度降至最低值.  相似文献   

8.
借助双丝电弧喷涂技术在316L不锈钢基体表面成功制备了高硬度、高强度的FeNi(WC)复合涂层,并对涂层显微组织结构及性能进行了分析研究。利用扫描电子显微镜(SEM)观察涂层截面显微组织形貌,并用其配置的X射线能谱(EDS)对涂层不同区域进行能谱分析,确定涂层中元素组成及分布情况,通过X射线衍射仪(XRD)对涂层进行相组成分析,并使用ImageJ图像处理软件测定涂层的孔隙率,采用维氏显微硬度计分别测定了基体和涂层显微硬度。实验结果表明,双丝电弧喷涂技术所制备的FeNi(WC)复合涂层与基体结合良好,组织均匀致密,涂层中含有部分孔洞和裂纹,但对基体的整体性能影响不大。FeNi(WC)复合涂层中主要物相为Fe和Ni组成的金属固溶体化合物FeNi、Fe_3Ni_2和硬质相WC、W_2C。基体平均显微硬度为213 Hv_(0.1),涂层平均显微硬度高达714 Hv_(0.1),约为基体硬度的3~4倍。涂层EDS面扫描得出涂层中元素均匀混合分布,C和W均匀分布在Fe和Ni元素之间,O元素的存在是喷涂过程中氧化所致。FeNi(WC)复合涂层是由Fe、Ni、C和W等主要元素组成的粘结相和硬质相交叉分布形成的典型层状结构,粘结相中弥散分布的硬质相使得涂层的硬度及整体性能得到明显提高。  相似文献   

9.
新型耐热钢Super304H高温时效后的组织与性能   总被引:1,自引:0,他引:1  
采用光学显微镜、扫描电子显微镜及X射线衍射等手段并通过显微硬度和冲击实验,研究了Supre304H钢经750~1350℃时效后的微观组织和性能.结果表明:高温时效后Super304H钢的微观组织为γ相+析出相;随时效温度的不同,基体晶粒尺寸及析出相的种类、分布发生不同的变化.在750℃左右因微细沉淀强化及细晶组织使得显微硬度达到最大值,而后随温度升高以及析出相、晶粒尺寸与固溶元素的变化,显微硬度呈现先快速下降后缓慢下降的趋势;时效试样的冲击功值随温度升高在850℃左右,由于M23C6沿晶界大量析出导致晶界脆化而达到最低值,后又因析出相的再溶解致使晶界脆化效果趋弱而逐渐升高.  相似文献   

10.
采用常压烧结方法成功制备了碳化钨颗粒增强铁基复合材料,研究了碳化钨颗粒粒度对复合材料组织、界面及力学性能的影响。结果表明:随着碳化钨颗粒粒度的减小,颗粒熔解程度增大,主要熔解的是W2C,WC熔解的数量较少;界面主要的反应产物为Fe3W3C,Fe3W3C含量随着颗粒粒度的减小而增加,界面随着颗粒粒度的减小由连续变成间断,直至不存;颗粒粒度越大,材料的硬度及压缩强度均提高;当颗粒粒度为380-550μm时,反应生成物Fe3W3C与碳化钨颗粒体积比为1∶1,界面呈连续状,复合材料具有较好的综合性能。  相似文献   

11.
用等离子快速烧结(SPS)法烧结制备碳化钨/钢基复合材料,然后用真空管式炉对其进行界面重熔,研究了重熔温度对界面反应的影响以及界面反应区的生成机制。结果表明,界面反应可在固态条件下发生,且随着重熔温度的提高界面反应区的宽度呈增大的趋势。界面反应的产物为Fe3W3C,其形成过程为:在约1314℃碳化钨颗粒内部发生反应2WC→W2C+C,然后在约1341℃发生W2C与基体的反应生成Fe3W3C。  相似文献   

12.
采用平均颗粒度为76um的电解铜粉,添加体积百分含量分别为3%,5%,10%,20%的WC,混粉后利用压力机采用500MPa的压力进行压制,然后利用放电等离子烧结设备(简称SPS)在750℃下进行烧结,并研究了烧结体的密度、硬度和显微组织。结果表明:烧结温度选择在750℃时,WC含量为3%时,所得弥散强化铜的烧结整体性能最好。WC对铜基体的弥散强化作用明显,随着WC含量的增加,试样的相对密度逐渐减小,硬度逐渐增加。  相似文献   

13.
目的 利用粉末冶金工艺制备了Fe-Ni-Cu-Cr-Si-C(石墨)材料,并且研究烧结温度对材料显微组织、硬度、致密度、耐磨性的影响.方法 在1050,1100,1150℃烧结温度下烧结2 h后得到了3组样品,并利用光学显微镜、扫描电子显微镜、X射线衍射仪对样品进行组织结构分析.采用布氏硬度计和电子天平分别对样品进行硬度和密度测试,采用球盘磨损实验机对样品进行耐磨性分析.结果 随着烧结温度的升高,晶粒尺寸逐渐变大.当烧结温度从1050℃增大到1100℃时,奥氏体量增加,表明奥氏体的转变在进行,且硬度和致密度也逐渐增加.烧结温度从1100℃增大到1150℃时,硬度的增速放缓,且在1150℃时硬度达到最大值,烧结温度在1150℃时耐磨损性能最好.随着烧结温度的升高,摩擦因数逐渐减小,由于材料的硬度增大,基体更有能力支撑表面润滑膜,从而表现出更加优越的耐磨损性能.结论 在1050~1150℃范围内,烧结温度的提高可以改善显微组织,提高组织的硬度、致密性、耐磨性.  相似文献   

14.
WC/钢基复合材料奥氏体化后的硬化效应及微观机理   总被引:7,自引:1,他引:6       下载免费PDF全文
研究了碳化钨(WC)增强钢基复合材料经980℃~1240℃范围高温奥氏体化后的淬火硬化效应,发现此材料具有显著的淬火硬化效果(68HRC)及良好的抗回火稳定性。研究了材料组织中大块硬质相,WC聚集区及基体显微硬度(HV0.05)的变化以及与宏观洛氏硬度之间的关系。最后,从材料科学及合金电子论角度得出了复合材料的超高硬度是来自W,Mo等含碳结构单元构成的强大马氏体基体及大体积比例分布的硬质相的贡献。  相似文献   

15.
以Ni/W/C为粉末原料用等离子原位冶金法制备了大颗粒WC合金球钉增强Q345耐磨钢板,用扫描电镜(SEM)、电子探针(EMPA)、X射线衍射仪(XRD)、显微硬度计等对球钉的组织成分、物相组成以及显微硬度进行表征,研究了这种大颗粒碳化钨复合材料的性能。结果表明:对于不同的粉末比例,40%Ni含量的球钉表面成型光亮、致密,与基体板的结合力强,内部的WC大颗粒分布均匀,其平均尺寸约为80μm,最大尺寸约为100μm,基体相为(Fe,Ni),还有网格状的Ni17W3和(Fe,Ni)共晶组织。球钉的平均显微硬度为1183.517HV0.1,大颗粒WC的显微硬度最大值为2078HV0.1。  相似文献   

16.
用真空熔铸法制备45/T2、304/T2复合材料,用金相观察、扫描电镜及能谱分析、X射线衍射、力学性能测试等手段研究了钢铜复合界面的结合强度、显微组织、显微硬度、界相区的成分变化等。结果表明:钢铜基体中的Fe、Cr、Cu等合金元素在界面发生了相互扩散,形成了新的铁碳化合物(CFe15.1)和固溶体Cu0.81Ni0.19、Cr-Ni-Fe-C相。在界面上有齿状的过渡带,未出现明显的金属间化合物,其显微硬度最大值为183/119 HV,宽度约为60-70μm。钢铜复合材料的抗拉、抗剪强度分别278/263 MPa、217/201 MPa,拉伸断口均出现在T2铜侧,远离界面扩散区域;界面结合机制均为扩散冶金结合,强度高于纯铜的抗拉/抗剪强度;在(1150±50℃、4.0×10-2Pa)条件下,与Cr、Ni等合金元素相比,Fe在Cu液中的扩散能力最强,而Cu对改善304/45钢的基体稳定性和强度也有重要的作用。  相似文献   

17.
采用金属钛粉和碳化硼为初始粉料,利用SPS放电等离子烧结技术制备了致密的纳米结构TiB2/TiC复合材料.并借助XRD、SEM考察了复合材料的相组成和显微结构,利用压痕法和小样品力学性能测试方法(MSP)测定了室温显微硬度、断裂韧性和MSP强度.研究结果表明:利用一步法直接升温至1550℃并保温6 min制备的复合材料,其晶粒尺寸大于1μm,MSP强度为833 MPa.而采用两步法升温至1550℃,然后迅速降低保温温度至1450℃,并保温6 min条件下使金属钛粉和碳化硼同步完成反应、烧结、致密化,生成晶粒细小的TiB2/TiC复合材料,晶粒尺寸大约为200 nm,并且所制备的复合材料力学性能更好,MSP强度达到1095 MPa.  相似文献   

18.
采用等离子球磨技术制得W-C-10Co-0.9VC-0.3Cr_3C_2纳米复合粉体,并利用单向模压成型法将其压制成生坯,再经低压烧结一步法制备成硬质合金。研究表明,等离子球磨3h所获得的复合粉体呈片层状形貌,并且成分分布均匀。在1 380℃及1 400℃烧结时,由于等离子球磨的特殊作用,VC、Cr_3C_2对WC晶粒长大抑制作用突显。1 380℃烧结制备的硬质合金,致密度为99.2%,WC平均晶粒尺寸为250nm,硬度和横向断裂强度分别为92.3HRA和2 443 MPa,具有最佳的WC晶粒尺寸与致密度配合,以及最佳的综合力学性能。  相似文献   

19.
采用亚微米WC粉和微米Co粉混合粉末作为原料,利用高能球磨与放电等离子烧结(SPS)技术制备超细晶WC-10Co硬质合金.研究表明,球磨后直接烧结时,当温度由1150℃增加到1200℃,试样的晶粒尺寸和硬度没有明显变化(平均晶粒尺寸约250nm),但致密度提高至98.6%,横向断裂强度由1045MPa提高到1819MPa.当对球磨后的混合粉末进行900℃真空处理后,在较低温度烧结的条件下试样的致密度则高达99%,且横向断裂强度与未处理粉末在相同工艺下烧结获得提高.  相似文献   

20.
热处理对卤化银多晶光纤显微结构的影响   总被引:1,自引:0,他引:1  
热挤压法成型的卤化银多晶光纤,经不同温度热处理后;光纤的显微结构发生了变化.扫描电镜形貌分析结果显示;热处理温度T≤170℃,显微结构未发生变化,晶粒尺寸1~2μm. T=200℃时,晶粒尺寸10~200μm; T=250℃时,晶粒尺寸20~30μm ;T=300℃时,晶粒尺寸30~40μm.光纤显微硬度测量结果也显示,热处理温度>170℃后,光纤的显微硬度随热处理温度的升高而降低,在200℃附近硬度降至最低值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号