首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用真空感应熔炼法制备Mn65-Cu23.75-Zn3-Al3-Ni3-Fe2-Ce0.05(at%)合金。对该合金进行轧制处理,然后进行均匀化退火。分别在850℃和950~1050℃对合金进行普通固溶及半固态固溶处理,随后在430℃时效0~16 h。研究半固态固溶温度及时效时间对Mn-Cu合金组织、阻尼性能和力学性能的影响。结果表明:普通固溶合金组织由单一γ-Mn Cu相构成,而半固态固溶合金组织则由富Mn和贫Mn的γ-Mn Cu相构成,且随着半固态固溶温度的升高,贫Mn相的含量不断增加。合金阻尼性能随时效时间的延长呈现出先上升后下降趋势。在最优时效条件下,较低的半固态固溶温度可提高合金的阻尼性能,而较高的半固态固溶温度则会降低其阻尼性能。和S850合金相比,S950合金的强塑积提高了约70%。但随着半固态固溶温度的升高,合金强塑积又有所下降。  相似文献   

2.
将真空熔炼制备并冷轧后的Ti-32Ta合金依次在600、700和800℃下进行固溶处理,通过光学显微镜、X射线衍射仪、扫描电镜、DSC热分析仪、DMA动态力学分析仪等对其进行微结构和阻尼性能表征,研究固溶处理温度对Ti-32Ta合金微观结构和阻尼性能的影响。结果表明,Ti-32Ta合金的再结晶温度在700~800℃之间,600℃固溶处理样品的组织为未再结晶组织,700℃和800℃固溶处理样品的组织中再结晶等轴晶粒随温度的升高而增多;Ti-32Ta合金经固溶处理后相变点Ms提高,600℃和700℃固溶处理样品的相变温度,相比于未固溶处理时的相变温度440 K(167℃)提高了39℃,800℃固溶处理样品的相变温度提升了18℃;固溶温度对Ti-32Ta合金的阻尼性能影响不明显,但工作温度对阻尼性能有较大的影响,当工作温度升高到150℃以上,材料的阻尼性能随温度升高呈现迅速升高的趋势。  相似文献   

3.
通过对7075铝合金进行不同温度(450、465、480和495 ℃)的固溶处理,研究了固溶温度对该合金的硬度、室温拉伸性能及高周疲劳性能的影响,并用光学显微镜和扫描电镜对合金显微组织及疲劳断口进行观察。结果表明,随着固溶温度的升高,合金组织发生不同程度的静态再结晶和晶粒长大,合金硬度和拉伸强度均先升高后降低,480 ℃固溶处理后达到最高;疲劳极限随着固溶温度的升高先降低后升高,495 ℃固溶处理后达到最高。疲劳裂纹主要起源于粗大残留相处,扩展过程中产生的二次裂纹可降低裂纹扩展的驱动力,进而降低合金的裂纹扩展速率,提高合金疲劳性能。  相似文献   

4.
固溶温度对GH864合金组织性能的影响   总被引:1,自引:1,他引:0  
对GH864合金进行3种固溶温度:1040、1060、1080℃×4 h/AC+双时效(845℃×24 h/AC+760℃×16 h/AC)热处理,并对其组织和力学性能进行了研究。结果表明:随着固溶温度的提高,晶粒尺寸出现明显长大,但增长速率越来越小,碳化物连续均匀分布在晶界上,同时,均匀的γ'强化相在基体上弥散析出;在合金性能上,随着固溶温度的提高,合金的高温拉伸伸长率、断面收缩率及室温冲击韧性都逐渐下降;然而,合金的高温815℃抗拉强度基本不变,其高温屈服强度及室温硬度经过1060℃固溶后出现峰值,同时合金的815℃/325 MPa持久性能及高温裂纹扩展速率在该固溶温度下表现出最佳的性能。综合该合金强度和塑性的最佳匹配,确定了GH864合金叶片热处理的最佳固溶温度及时效处理控制工艺为:1060℃×4 h/AC+845℃×24h/AC+760℃×16 h/AC。  相似文献   

5.
采用不同的固溶温度对Al-Mg-Si-Sr新型铝合金进行了固溶热处理,并进行了合金350℃高温拉伸性能和高温磨损性能的测试与分析。结果表明:随固溶温度从440℃逐步增加到540℃时,合金的高温拉伸性能和高温磨损性能均先提高后下降;合金的固溶温度优选为520℃。与440℃固溶相比,当采用520℃固溶时,Al-Mg-Si-Sr新型铝合金的高温抗拉强度提高了52%,高温屈服强度提高了79%,高温磨损体积减小了58%。  相似文献   

6.
固溶处理对Fe-5Al-2Mo减振合金阻尼性能的影响   总被引:1,自引:0,他引:1  
实验研究了固溶处理温度对Fe-5Al-2Mo减振合金阻尼性能的影响。结果表明,该合金的阻尼性能受固溶处理温度影响较大,900-1000℃固溶处理后的合金的阻尼性能较好。  相似文献   

7.
采用不同的固溶温度、固溶时间、时效温度和时效时间对汽车空调新型铝合金Al-Si-Cu-Mg-Ti-In进行了热处理,并进行了试样拉伸性能和耐磨损性能的测试与分析。结果表明:在试验条件下,随固溶温度从500℃增加到530℃,固溶时间从4 h增加到12 h,时效温度从160℃提高到190℃,或时效时间从5 h提高到9 h,该合金的抗拉强度均先增大后减小,磨损体积先减小后增大,拉伸性能和耐磨损性能均先提高后下降。合金的固溶温度、固溶时间和时效温度、时效时间分别优选为525℃、10 h和185℃、8 h。  相似文献   

8.
通过硬度、电导率、拉伸试验及金相分析,研究了在460、475、490℃分别保温30、60、120 min的固溶工艺对7449铝合金组织和性能的影响。结果表明,475℃×1 h是该合金最优的固溶工艺,此时合金的综合性能最佳;且固溶处理+自然时效态合金的抗拉强度、屈服强度和伸长率分别为561.32 MPa、362.19 MPa、22.92%;合金的固溶处理过烧温度为490℃;在固溶处理中,固溶温度比保温时间对该合金性能的影响更大。  相似文献   

9.
采用室温拉伸性能测试、示差扫描量热分析、金相分析以及透射电镜分析,研究了2124铝合金热轧厚板在不同固溶温度与固溶时间处理下的拉伸力学性能、显微组织及其变化规律。结果表明:适当升高固溶温度或延长固溶时间,晶粒中未溶第二相较少,可提高合金的固溶程度,从而提高合金的强度,但过高固溶温度或过长固溶时间会使晶粒有长大的倾向,使合金的伸长率降低。根据试验结果确定了该合金的最佳固溶温度为498℃,固溶时间为80 min。  相似文献   

10.
热处理对Fe-14.04Mn-0.22C合金阻尼性能的影响   总被引:1,自引:0,他引:1  
研究了Fe—Mn基减振合金的减振机制,并深入分析了固溶处理对Fe-14.04Mn-0.22C减振合金阻尼性能的影响。研究结果表明,该合金经固溶处理后,发生了γ→ε转变,固溶处理温度越高,γ→ε转变生成的马氏体越多,合金的阻尼性能随固溶处理温度的升高而提高,在1000℃时,合金的阻尼性能达到最大值,随温度的进一步升高,阻尼性能反而恶化。  相似文献   

11.
扫描电镜观察显示胫骨是一种由羟基磷灰石和胶原蛋白组成的自然生物陶瓷复合材料.羟基磷灰石具有层状的微结构并且平行于骨的表面排列.观察也显示这些羟基磷灰石层又是由许多羟基磷灰石片所组成,这些羟基磷灰石片具有长而薄的形状,也以平行的方式整齐排列.基于在胫骨中观察到的羟基磷灰石片的微结构特征,通过微结构模型分析及实验,研究了羟基磷灰石片平行排列微结构的最大拔出能.结果表明,羟基磷灰石片长而薄的形状以及平行排列方式增加了其最大拔出能,进而提高了骨的断裂韧性.  相似文献   

12.
杨建华  朱勇  张源 《模具工业》2005,(12):24-26
结合长期的实践体会,分析了冲压件小螺纹底孔翻边参数,对冲压件小螺纹底孔部分翻边参数进行了有效的修正,修正后的参数在长期的运用中效果较佳。  相似文献   

13.
钢材打捆机控制系统智能化技术的研究   总被引:1,自引:0,他引:1  
钢材打捆机是一种用于轧钢精整工艺的新型自动化设备,其控制系统基于SiemensS7 PLC和TP7触摸屏。系统的智能化技术主要包括:液压高低压自动控制、在线监视、离线故障检测、多台设备协同工作、可视化人机交互技术。本文描述了这些技术的原理与实现方法。  相似文献   

14.
The technology of ultrasonic welding of components made of Capron tapes producing welded joints with high strength parameters has been developed. The numerical values of the main parameters of the conditions of ultrasonic welding of the Capron tapes are determined. It is shown that the increase in the amplitude and welding pressure shortens the welding time. The experimental results show that the Capron tapes are characterized by geometrical homogeneity in both the transverse and longitudinal direction so that the welded joints can be produced both along and across the tape.  相似文献   

15.
刘兴  赵霞 《表面技术》2008,37(1):37-39
采用激光辐照对FeCrAlW电弧喷涂层的组织进行致密化处理,借助扫描电镜和X衍射对涂层的组织进行了分析.测试了涂层的显微硬度.结果表明:涂层组织致密度提高,孔隙率明显降低.随着激光扫描速度的增加,涂层的显微硬度降低.在较低的扫描速度下,涂层与基体之间形成互熔区,涂层与基体之间产生良好的冶金结合.  相似文献   

16.
吴水康  王长周 《钢管》2006,35(4):20-23
宝山钢铁股份有限公司钢管分公司的穿孔机下辊主减速机在大定修前,减速机轴和下辊大电机的振动情况严重,诊断部门对该减速机进行了测振分析,结合对电机振动、减速机振动的频谱分析和对轴承的故障频率成分分析,找出了主减速机振动的原因是轴承损伤。该分析结果与解体检查的结果相一致。  相似文献   

17.
介绍了空气锤锤杆导程及导板拉伤缺陷及其修复工艺,效果十分理想。  相似文献   

18.
Abstract

The paper is devoted to 100th anniversary of the outstanding Russian scientist professor Yuriy Mikhailovich Lakhtin – the founder of the world-famous scientific school of surface strengthening of metals and alloys. Lakhtin's scientific school is recognised for its contribution into research of processes of thermochemical treatment of metals and especially of nitriding. Today at the Department of Metal Science and Heat Treatment of MADI his followers continue the traditions of Lakhtin's scientific school. The development of technologies of surface engineering is based on complex modelling of physical processes realised by thermochemical treatment of metals. Thermodynamic models describe the interaction between metals and components of saturating atmosphere and predict phase composition of diffusion layer. Diffusion models of kinetics of saturation of metals allow us to calculate the rate of growth of diffusion layer and regulation of its depth and structure. Structural models determine quantitative dependence between parameters of structure (grain size, dispersed particles, etc.) and mechanical properties. These models allow us to estimate the level of strengthening by control of structural specifics of strengthened layer. On the basis of this complex of models, new efficient technologies of surface strengthening are developed.  相似文献   

19.
论述了CAD技术中参数化设计的三种建模方法,重点介绍了基于特征的参数化建模原理。在此基础上,分析机械设计中的机构结构,归纳出其零件的几何特征构成。设计了机构CAD图形库,并提出了该图形库生成步骤和人机交互界面。  相似文献   

20.
高等教育国际化与中国高等教育施化力培育   总被引:5,自引:2,他引:5  
本文从化层、化型、化向与化力等方面考察高等教育国际化的应然本质属性 ,描述与分析中国高等教育在国际化潮流中表现出的发展态势 ,针对种种态势提出中国高等教育核心施化力培育战略 ,以使中国高等教育乃至世界高等教育真正地走向国际化  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号