首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
为实现甜叶菊中绿原酸含量的快速检测,该研究利用近红外光谱技术结合偏最小二乘法对甜叶菊绿原酸含量的光谱数据进行了近红外模型分析。结果表明,采用多元散射校正(multiplicative scatter correction, MSC)+Savitzky-Golay卷积平滑预处理算法和无信息变量消除法(uniformative variable elimination, UVE)特征波长选择算法,绿原酸含量近红外模型的性能最好。该模型的交互验证相关系数(correlation coefficient in cross validation,RCV)和交互验证残差均方根(root mean square error of cross validation, RMSECV)分别为0.945 3和0.263 1;验证集相关系数(correlation coefficient in validation,RP)和验证集残差均方根(root mean square error of prediction, RMSEP)分别为0.952 1和0.247 2。...  相似文献   

2.
采用偏最小二乘法(Partial least squares,PLS)作为建模方法,对磷虾油近红外光谱的一阶微分(First-order difference,FD)、FD+SG(Savitzky-Golay,SG)滤波、FD+N(Norris,N)滤波、二阶微分(Second-order difference,SD)、SD+SG和SD+N等6种单一或复合方法进行处理,通过对不同方式处理后预测模型的交互验证均方根误差(Root mean square error of cross validation,RMSECV)、外部验证残差均方根(Root mean square error of external prediction,RMSEP)和外部验证用样品真实值的标准差(SD)与RMSEP的比值(The ratio of the RMSEP to standard deviation of reference data in the prediction,RPDEV)、建模相关系数(Correlation coefficient in calibration,RC)、交互验证相关系数(Correlation coefficient in cross validation,RCV)和外部验证相关系数(Correlation coefficient in external validation,REV)等参数比较,确定了磷虾油磷脂、EPA和DHA的近红外预测模型最佳处理方式为FD、FD和SD+N,酸价指标模型不需处理。在最优条件下,四种成分近红外预测模型的RC、REV和RCV,除了酸价的RCV略小(0.917)其余均达到0.95以上,同时,四种成分的RPDEV和RPDCV值,除酸价的RPDCV为2.365,略小于2.5,其余均符合大于2.5的要求,说明磷虾油磷脂、EPA和DHA的近红外预测模型预测准确度良好;RMSEC和RMSECV相差不大,说明模型稳定性较好。由于含量低、组成复杂等原因,磷虾油虾青素近红外检测模型的RC、RCV和REV均在0.60以下,说明近红外检测不适用于磷虾油中虾青素成分的快速检测。本文证实了近红外光谱技术可作为磷虾油中磷脂、EPA、DHA和酸价等主要指标的快速检测方法,是传统化学检测方法的有效替代和补充。  相似文献   

3.
目的 建立浦城薏米粉水分和还原糖的近红外光谱快速检测模型。方法 采集浦城薏米粉样品的近红外光谱图, 使用6种不同方法对样品的原始光谱分别进行预处理, 在全波段10000~4000 cm?1范围内建立薏米粉偏最小二乘法(partial least squares, PLS)的定量分析模型。结果 浦城薏米粉原始光谱在标准正态变换(standard normal variate, SNV)预处理后确定水分含量最佳模型的光谱波段(5944~5590 cm?1), 主因子数为7, 校正决定系数(determination coefficient of calibration, Rc2)为0.9904, 均方根误差(root mean square error, RMSEC)为0.0631; 在二阶导数法(second derivative, SD)预处理后确定还原糖含量最佳模型的光谱波段(9845~7386 cm?1), 主因子数为6, Rc2为0.9998, RMSEC为0.0187。在上述条件下, 水分和还原糖含量的验证集相关系数(determination coefficient of prediction, Rp2)分别为0.9902和0.9989, 验证均方根(root mean square of prediction error, RMSEP)分别为0.0693和0.0698。结论 经验证, 该模型可以实现浦城薏米粉中水分和还原糖含量的快速无损检测。  相似文献   

4.
采用短波近红外光谱仪器在线检测保健酒调配液生产线上产品的酒精度。通过使用一阶倒数(First derivative,FD)和平滑处理(Norris derivative filter,ND),对近红外图谱进行预处理,使用偏最小二乘法(Partial least square,PLS)建立了酒精度检测近红外模型。模型的校正集均方根误差(Root mean square error of calibration,RMSEC)为0.737,交互验证相关系数为0.9189;预测集均方根误差(Root mean square error of prediction,RMSEP)为0.788,交互验证相关系数为0.9425。实验数据显示,近红外计算酒精度数值与标准法测量数值相对偏差主要集中在±2%之间,该方法可以满足生产过程中在线检测酒精度的要求。  相似文献   

5.
柿饼涩味评价是柿饼生产流通环节的重要控制工作。目前没有建立柿饼的快速无损检测方法。文章以恭城月柿为原料,建立涩味可见近红外快速无损检测模型。结果表明:柿饼水分含量在32.1%~36.17%可见近红外定量分析中,发现在460~1050 nm与1300~1680 nm波段范围内,采用改进偏最小二乘回归算法、二阶导数结合标准正常化处理(Standard normal variate,SNV)的建模效果最好。其定标交互验证相关系数(Correlation coef?cient of cross validation,1-VR)和预测相关系数(Correlation coefficient of prediction,R_p~2)分别为0.878和0.865,定标交互验证均方根误差(Root mean standard Error of cross validation,RMSECV)和预测均方根误差(Root mean square error of prediction,RMSEP)分别为0.105、0.125 g/100 g.d;定性模型中,柿饼水分含量在33.2%~36.11%范围内采用450~1050 nm与1300~1650 nm波段结合去散射处理(Detrend only,D)、一阶导数预处理方法最好。判别模型正确率93.1%,预测正确率为72.22%~88.89%。因此,近红外光谱技术可用于柿饼涩味快速无损的定量定性分析。  相似文献   

6.
摘 要:目的 建立一种基于近红外光谱技术快速测定甘薯多糖的方法。方法 通过采集来自不同地区的74个甘薯及甘薯干的近红外光谱图,对异常样本进行剔除与回收后随机选择其中56种作为校正集,11种作为验证集。通过一阶导数、二阶导数、多元散射校正(multiplicative signal correction,MSC)、标准正态变量变换(standard normal variate,SNV)等组合预处理方式对原始光谱进行处理,比较多元线性回归(stepwise multiple linear regression,SMLR)、主成分回归(principal component regression,PCR)和偏最小二乘法(partial least squares,PLS)三种方法建立的模型结果,进一步选择波段确定最佳甘薯多糖含量测定方法。结果 PLS建立的模型整体精确度和稳定性最佳,最优模型的预处理方式为一阶导数处理,该模型的最佳波段为全波段范围,校正集均方根误差(root mean square error of calibration set,RMSEC)为相关系数0.496,校正集相关系数(calibration set correlation coefficient,RC2)为0.9683,验证集均方根误差(root mean square error of prediction set,RMSEP)为0.430,验证集相关系数(prediction set coefficient of determination,RP2)为0.9440,主成分数为8。结论 通过近红外光谱技术结合偏最小二乘法建立甘薯多糖模型可作为甘薯多糖快速测定的可行性方法。  相似文献   

7.
窦颖  孙晓荣  刘翠玲  肖爽 《食品科学》2016,37(12):208-211
模拟退火算法(simulated annealing algorithm,SAA)是一种随机搜索、全局优化算法,为提高近红外光谱检测面粉品质模型的准确度与稳健性,实验提出基于SAA优化波长,再结合偏最小二乘(partial least squares,PLS)法建模预测的定量模型,并对SAA中冷却进度表参数设置进行对比分析。实验依据面粉中灰分含量梯度,随机选取126 份样本的近红外光谱建立SAA-PLS模型。结果发现,SAA从2 074 个波数优选出70 个波数,结合PLS建立的定量模型相关系数为0.976 0,交互验证均方根误差(root mean square error of cross validation,RMSECV)为0.022,预测均方根误差(root mean square error of prediction,RMSEP)为0.030 1,全谱建立的PLS模型相关系数为0.778 5,RMSECV为0.066 6,RMSEP为0.076 8。结果表明,基于SAA优化特征谱区,建立灰分定量模型是可行的,且准确度与稳健性明显优于全谱定量分析模型。  相似文献   

8.
为实现近红外光谱技术在小种红茶中的快速无损检测,对76份有代表性的小种红茶按现行国家标准测定其水浸出物含量,采集样品的近红外光谱,采用OPUS 7.5软件,结合偏最小二乘法(partial least squares,PLS)建立小种红茶水浸出物含量的近红外定量分析模型。结果表明,所建立的水浸出物定量模型决定系数R2为95.73%,校正均方差(root mean square error of calibration,RMSEC)为0.629,验证均方差(root mean square error of prediction,RMSEP)为0.513。所建立的小种红茶水浸出物含量的近红外定量分析模型较为成功,模型预测效果较好,能够对小种红茶中水浸出物的含量进行快速地分析。  相似文献   

9.
为得到可靠的小麦粉中面筋含量定量分析模型,基于光谱预处理及模拟退火算法(simulated annealing algorithm,SAA)对近红外光谱(near infrared spectroscopy,NIR)进行优化处理。偏最小二乘(partial least squares,PLS)回归用于建立预测模型,以决定系数R2、校正均方根误差(root mean square error of calibration,RMSEC)、预测均方根误差(root mean square error of prediction,RMSEP)为指标,对比在不同光谱预处理条件下建立的回归模型与光谱预处理结合模拟退火算法优化处理条件下的回归模型。结果表明光谱预处理结合SAA-PLS模型能够有效提高模型的稳定性和预测能力,将R2从0.763?7提高到0.949?1、RMSEC从1.371?2降低到0.589?8、RMSEP从1.450?2降低到0.534?1。结果说明,光谱预处理结合模拟退火算法对光谱进行优化处理是可行的,模型预测能力和稳定性均优于未处理模型和仅进行光谱预处理的模型。  相似文献   

10.
为建立一种无损快速检测百香果糖度的技术,以百香果为研究对象,利用近红外光谱技术,并结合联合区间偏最小二乘算法和竞争适应重加权采样算法对近红外光谱进行特征波长筛选,采用偏最小二乘法和支持向量机方法建立百香果糖度预测模型。结果表明:采用多元线性回归方法建立的模型优于多元非线性回归方法建立的模型,联合区间偏最小二乘算法和竞争适应重加权采样算法筛选出的特征波长点数为67 个,占全光谱的2.90%,预测模型的相关系数R2c 为0.972 7,校正集预测均方根误差(root mean square error of calibration,RMSEC)值为0.333 8,验证集的相关系数R2p 为0.967 2,验证集预测均方根误差(root mean square error of prediction,RMSEP)值为0.366 0,模型相对分析误差(relative prediction deviation,RPD)为4.506 6。研究结果能够实现百香果糖度的无损快速检测,并且可以将百香果糖度无损检测便携检设备中的模型进行简化。  相似文献   

11.
Fourier transform near infrared (FT-NIR) spectroscopy is an analytical procedure generally used to detect organic compounds in food. In this work the ability to predict fumonisin B(1)+B(2) contents in corn meal using an FT-NIR spectrophotometer, equipped with an integration sphere, was assessed. A total of 143 corn meal samples were collected in Friuli Venezia Giulia Region (Italy) and used to define a 15 principal components regression model, applying partial least square regression algorithm with full cross validation as internal validation. External validation was performed to 25 unknown samples. Coefficients of correlation, root mean square error and standard error of calibration were 0.964, 0.630 and 0.632, respectively and the external validation confirmed a fair potential of the model in predicting FB(1)+FB(2) concentration. Results suggest that FT-NIR analysis is a suitable method to detect FB(1)+FB(2) in corn meal and to discriminate safe meals from those contaminated.  相似文献   

12.
水分含量快速测定是保证泡芙制作品质的重要需求。利用IAS Online-S100型在线近红外光谱分析仪,采集了130个建模集样品和30个验证样品的近红外光谱,结合光谱预处理和偏最小二乘法建立泡芙水分定量分析模型。研究结果表明,采用移动窗口平滑(平滑点数为11)+SNV法进行光谱预处理,主因子数为9的条件下,模型的决定系数R2、校正集均方根误差(RMSEC)、交互验证均方根误差(RMSECV)和预测集均方根误差(RMSEP)分别为0.88、0.49%、0.55%、0.57%。模型的预测误差在±1.3以内,精度满足工厂的使用需求。  相似文献   

13.
采用可见- 近红外漫反射光谱技术,结合偏最小二乘法,以不同时间采摘的哈姆林甜橙果实为样品建立其可溶性固形物、含酸量和VC 的无损检测数学模型,同时对不同光谱预处理方法和不同建模波段范围对模型的预测性能进行对比分析。结果表明:原始光谱在400~1000nm 波段的模型预测精度较高。经多元散射校正和5 点移动平均平滑预处理后,果实可溶性固形物含量的PLS 模型最好,校正集样品的相关系数为0.995RMSEC和RMSEP分别为0.026%、0.028%;预测集样品的相关系数为0.992。经多元散射校正和9 点移动平均平滑预处理后,果实含酸量的PLS 模型最好,校正集样品的相关系数为0.997,RMSEC 和RMSEP 分别为0.012%、0.013%;预测集样品的相关系数为0.997。经多元散射校正和9 点移动平均平滑预处理后,果实VC 含量的PLS 模型最好,校正集样品的相关系数为0.998,RMSEC 和RMSEP 分别为0.009%、0.009%;预测集样品的相关系数为0.999。可见由不同时间采摘的果实组成的样品集所建立的数学模型可以提高模型的预测精度,从而提高模型的适用范围。应用可见-近红外漫反射光谱检测哈姆林甜橙果实的内在品质可行。  相似文献   

14.
目的采用近红外光谱技术,筛选有效变量对苹果可溶性固形物含量进行无损快速检测。方法以改进无变量信息消除算法为变量筛选方法,采用多元线性回归算法建立校正模型,采用外部盲样对模型进行预测准确度评价。结果基于改进无信息变量消除算法,筛选1391、1435、1521、1589nm4个关键波长作为变量,其所建校正模型的测定系数为0.6823,校正误差均方根为1.06,交互验证测定系数为0.6780,交互验证误差均方根为1.06。外部验证测定系数为0.6585,预测误差均方根为1.07。经F检验,预测模型的预测值与测定值之间具有显著相关性。结论该方法基本能够满足苹果可溶性固形物含量无损快速检测的需求,并可为水果可溶性固形物含量无损快速检测仪器的研制提供一定的技术参考。  相似文献   

15.
目的建立近红外光谱法结合偏最小二乘法测定许氏平鲉鱼肉中的脂肪和水分含量,以期简便、快速地对许氏平鲉进行品质分析与评价。方法采用常规分析手段测定70个样品的脂肪和水分含量,同时采集其近红外光谱数据,结合偏最小二乘法(partial least square,PLS)建立许氏平鲉鱼肉中脂肪和水分的定量预测模型,并对比不同光谱预处理方法、光谱范围和因子数对定量预测模型的影响。结果光谱经Savitzky-Golay(S-G)和标准正态变量变换(standardized normal variate,SNV)预处理后,在5341.85~4007.36 cm~(-1)、6556.79~5345.71cm~(-1)和8651.10~7162.33 cm~(-1)光谱范围内,选取主因子数10,建立脂肪的校正模型性能最优;光谱经过SNV预处理后,在8886.38~4061.35cm~(-1)光谱范围内,分别选取主因子数为9时,建立的水分的校正模型性能最优。脂肪和水分含量相对最优PLS模型的校正集相关系数分别为0.9918和0.9912,校正标准偏差分别为0.2680和0.3300,交叉验证相关系数分别为0.9820和0.9810,交叉验证均方差分别为0.3980和0.4850,验证集相关系数分别为0.9804和0.9798,验证集均方差分别为0.3260和0.3070。结论本方法可较为准确地预测许氏平鲉鱼肉中的脂肪和水分含量,能够满足快速分析评价许氏平鲉品质的要求。  相似文献   

16.
基于光谱预处理及遗传算法(genetic algorithm,GA)法优化波长,再结合偏最小二乘(partial least squares,PLS)法建立面粉中水分的定量分析模型,对比在不同预处理方法下相关系数R~2、校正标准差(root mean square error of calibration,RMSEC)、预测标准偏差(root mean square error of prediction,RMSEP)3个指标,随机选择130份样本建立预处理+GA+PLS定量分析模型,实验结果为R~2从0.955 2提高到0.977 7、RMSEC从0.375 8降低到0.245 3、RMSEP从0.268降低到0.264。结果表明基于光谱预处理结合GA优化波长来定量分析面粉中水分含量是可行的,且准确性和误差度皆优于无优化模型。  相似文献   

17.
目的:建立一种快速检测高纤维素、木质素物料水分含量的方法。方法:以槟榔这种含高纤维素、木质素的中药材为原料,用近红外光谱仪采集近红外漫反射光谱,运用NIR Cal建模软件对光谱数据进行预处理,优选特征波长,并运用偏最小二乘法(PLS)分析建立槟榔水分含量定量模型。结果:槟榔水分含量定量模型校正集决定系数为0.994 2,校正误差均方根(RMSEC)为0.50;验证集决定系数为0.986 7,预测误差均方根(RMSEP)为0.68。结论:该方法简便、快速、安全、实用、准确,适用于含高纤维素、木质素物料的水分含量的快速测定。  相似文献   

18.
以建立花茶花青素含量的最优近红外光谱模型为目标,对比研究了蚁群算法(Ant ColonyOptimization,ACO)和遗传算法(Genetic Algorithm,GA)优化近红外光谱谱区的效果。ACO-i PLS将全光谱划分为12个子区间时,优选出第1、9、10共3个子区间,所建的校正集和预测集相关系数分别为0.901 3和0.864 2;交互验证均方根误差(RMSECV)和预测均方根误差(RMSEP)分别为0.160 0 mg/g和0.202 0 mg/g;GA-i PLS将全光谱划分为15个子区间时,优选出第1、5共2个子区间,所建模型的校正集和预测集相关系数分别为0.906 3和0.879 3,交互验证均方根误差(RMSECV)和预测均方根误差(RMSEP)分别为0.156 0 mg/g和0.206 0 mg/g。研究结果表明:ACO-i PLS和GA-i PLS均可以有效选择近红外光谱特征波长,其中GA-i PLS模型的精度更高。  相似文献   

19.
张斌  沈飞  章磊 《现代食品科技》2019,35(2):247-252
本研究运用近红外光谱无损检测技术,开发了一种适用于面粉品质检测的在线测量系统。本系统在硬件平台基础上,采用C++Builder 6.0对NIR 1.7/S微型光谱仪进行二次开发,编写了具有光谱采集、面粉品质预测、模型更新和数据存储等功能的软件。对市售170种面粉进行试验,以面粉水分含量为代表性指标。通过对比不同光谱预处理方法建模结果,发现不进行任何预处理时的面粉水分偏最小二乘回归(PLS)得到的模型精度最高。建模集和验证集决定系数(R2)分别为0.947,0.841;均方根误差(RMSE)分别为0.146%,0.198%;RPD值为2.53。模型导入软件后对30份新样品进行外部验证,预测值与测量值决定系数(R2)为0.883,均方根误差为0.206%。结果表明,该系统能够初步实现面粉水分的实时预测,为近红外在线检测技术应用提供了一定的技术参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号