首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
为提高羊毛角蛋白的提取率和应用性能,采用离子液体和羊毛预处理-还原C法2种途径溶解羊毛,并且通过不同方法获得再生羊毛角蛋白膜,对比了2种方法得到的再生角蛋白的性能和溶解率。研究发现利用改进的还原C法提取角蛋白,羊毛溶解率超过86%。再生角蛋白膜的红外测试结果表明,离子液体溶解再生羊毛角蛋白膜分子的部分二硫键被氧化而断裂;X射线衍射测试结果表明,离子液体溶解法所获取的再生羊毛角蛋白膜分子构象由α-螺旋结构转变成β-折叠结构,而改进的还原C法再生羊毛角蛋白膜保留了部分α-螺旋结构。  相似文献   

2.
为提高废弃羊毛纤维的综合利用率,采用一种新型的还原性类离子液体巯基乙酸胆碱对羊毛进行溶解和再生,观察了羊毛纤维在其中的溶解过程。采用红外光谱仪、X射线衍射分析仪、差示扫描量热仪以及凝胶电泳仪对不同温度下提取的再生角蛋白性能进行了研究。结果表明:巯基乙酸胆碱能够有效打开羊毛角蛋白大分子之间的二硫键,从而实现对羊毛皮质层及鳞片层的高效溶解,120 ℃条件下,最高溶解质量分数可以达到16%;经巯基乙酸胆碱溶解再生制得的角蛋白,其蛋白主体结构得到保留,但是与原羊毛相比,再生角蛋白中的α-螺旋含量降低,分子质量降低,并且随着溶解温度提高,角蛋白大分子也发生了一定程度降解。  相似文献   

3.
羊毛角蛋白的提取方法   总被引:1,自引:0,他引:1  
采用3种不同的工艺提取羊毛角蛋白,并对各种工艺下羊毛的溶解率、角蛋白溶液的质量分数、角蛋白的分子结构及溶液稳定性等做了对比测试和分析,以选择一种较合理的提取羊毛角蛋白的工艺,达到有效利用羊毛资源的目的。实验结果表明,采用尿素/硫化钠/十二烷基硫酸钠(SDS)工艺溶解羊毛,溶解率高达48.48%,角蛋白溶液的质量分数为1.59%。红外光谱分析表明,3种工艺提取出的角蛋白的分子结构基本相同;与羊毛纤维相比,提取的角蛋白中不仅存在α-螺旋和β-折叠构象,而且存在无规卷曲构象。尿素/硫化钠/SDS工艺提取出的角蛋白溶液的稳定性较其他2种工艺提取出的角蛋白溶液好。因此,尿素/硫化钠/SDS工艺是一种较好的溶解羊毛的方法。  相似文献   

4.
《印染》2015,(20)
使用L-半胱氨酸提取羊毛角蛋白,可大大降低溶解成本,且提取方法更环保。L-半胱氨酸提取羊毛角蛋白的最佳工艺为:L-半胱氨酸2%,p H值10,尿素8 mol/L,温度75℃,溶解时间5 h;羊毛溶解率72%,角蛋白粉末的提取率62%(相对分子质量超过10 k Da),提取的羊毛角蛋白相对分子质量分布在10、40和60 k Da,在再生过程未发生较大变化。  相似文献   

5.
电化学间接氧化方法提取羊毛角蛋白可以获得较大溶解率,在之前研究基础上,通过增加使用阴阳离子膜电解来探讨对羊毛溶解率的影响,并进一步分析提取的羊毛角蛋白的相对分子质量和氨基酸组成。结果表明,电化学降解羊毛角蛋白相对分子质量为388,氨基酸总含量为4.34%。属于低分子溶解。  相似文献   

6.
为充分回收利用废弃羊毛资源,采用还原C法(R法)和熔融尿素法(U法)从羊毛纱线中提取角蛋白,并用红外光谱和电泳测试方法对所提取的角蛋白进行表征;制备含羊毛角蛋白的功能材料,并对其进行再溶解性能研究。结果表明:2种方法所得角蛋白的分子量分布为17. 0~54. 0 k D和14. 4~25. 0 k D,且结构中均保留了完整的酰胺带;角蛋白能很好地溶解在质量分数为88%的HCOOH和0. 08 mol/L的Na OH溶液中,也可以溶解在0. 12 mol/L的Na2CO3和Na HCO3中;提取的角蛋白随着放置时间的延长,分子量变大,溶解难度加大;并且角蛋白可以溶解在0. 08 mol/L的Na OH与二甲基亚砜(DMSO)或N,N-二甲基甲酰胺(DMF)、以及88%的HCOOH与DMSO或DMF的混合溶剂中,但随着DMSO或DMF的加入,溶解度降低。  相似文献   

7.
介绍了羊毛的结构、分子量构成及其溶解方法,还原法是目前溶解羊毛角蛋白的主要方法,只切断二硫键完整地保留角蛋白的一级结构是目前角蛋白还原水解的主要方向.探讨了还原法溶解羊毛中遇到的问题,提出了见解和主张;介绍了几种新型的羊毛溶解剂和蛋白交联的方法,鉴于目前制得的角蛋白溶液分子量较小的问题,在蛋白溶液里加入交联剂,增大角蛋白分子量是目前提高蛋白液应用性能的主要方法.  相似文献   

8.
为解决废弃羊毛难以再利用的问题,采用氯化胆碱、尿素和巯基乙醇制备三元低共熔溶剂(DES),对废弃羊毛纤维进行溶解再生,并研究再生角蛋白与PVA的混合纺丝效果。研究结果显示,羊毛在DES中溶解的最合适温度约为120℃,温度过高易导致角蛋白溶解;加入巯基乙醇可以迅速提高羊毛的溶解速率,而且巯基乙醇浓度越高,羊毛的溶解度也越大。静电纺丝效果显示,角蛋白/PVA混合体系可以连续制备纳米纤维毡材料,而且制备出的纳米纤维形态均匀,空隙丰富。吸附性能测试显示,纳米纤维毡对水溶液中的亚甲基蓝具有较好的吸附性能。  相似文献   

9.
制革及毛纺工业中的废弃羊毛是一种重要的角蛋白资源,具有较高的利用价值。本文介绍了废弃羊毛角蛋白的主要提取方法及其在纺织、生物医药、功能材料等领域中的应用。  相似文献   

10.
羊毛角蛋白纤维化再生的研究进展   总被引:2,自引:2,他引:2  
根据羊毛资源和利用的现实情况,认为羊毛价值的提升,既可以充分利用改性技术来实现,也可考虑羊毛角蛋白的纤维化再生。羊毛角蛋白的纤维化再生不仅有着很好的科学意义和明显的应用前景,而且通过研究是可行的。文章详细介绍了目前国内外对羊毛角蛋白纤维化再生的研究结果及进展。  相似文献   

11.
曲虫治理效果分析   总被引:1,自引:0,他引:1  
王慎安 《酿酒》2004,31(3):13-14
通过对曲虫治理应用研究效果的分析 ,结果表明 :质量效果提高 7% ,糖化力效果提高 80 % ,综合效果提高 92 7%。  相似文献   

12.
13.
有梭织机稀密路织疵成因分析   总被引:4,自引:1,他引:3  
从有梭织机打纬过程中织机构件的位置和状况对纬纱之间距离的影响出发,推导出纬向密度计算公式,直观分析了影响纬向密度的各种因素,提出了为减少稀密路织疵在国产老织机上采取的几项改进措施:采用弹簧回综、机外送经、电子驱动、导布辊加压等装置。  相似文献   

14.
脂肪酸聚甘油酯(Polyglycerol esters of fatty acids,简写为PGE)在常温下有半固态和固态两种存在状态,本文通过对分别添加这两种PGE的软冰淇淋基料进行粘度、pH、粒径分析和垂直扫描分散稳定性分析(Turbiscan),发现半固态PGE的添加量为0.2%时,乳状液的粘度最低,粒径最小,稳定性最好;固态PGE的添加量为0.4%时.乳状液的粘度最低,粒径最小.通过比较发现,两种PGE对基料的影响有很大差别:半固态PGE能使乳状液的粒子更小,并能有效延长乳状液的稳定性;而固态PGE由于其熔点较高,可以促进脂肪结晶.  相似文献   

15.
The article gives a brief account of the main streamlines and scope of scientific activities of Department of Preventive Medicine of RAMS for the recent 10 years.  相似文献   

16.
目的 分析食用油中酸价测定的不确定度来源并建立不确定度评定方法, 为检验数据的可靠性和准确性提供参考。方法 依据GB 5009.229-2016《食品安全国家标准 食品中酸价的测定》和JJF 1059.1-2012《测量不确定度评定与表示》建立数学模型, 计算各变量的不确定度, 最终计算扩展不确定度。结果 结果显示, 样品中酸价的扩展不确定度为U=1.764×10?3 mg/g, 样品中酸价含量为(0.16±0.002) mg/g(置信水平95%, 包含因子k=2)。结论 在测定过程中, 测量重复性对总的不确定度影响最大, 其次是滴定管的体积。  相似文献   

17.
酶水解猪皮胶原的色谱分离研究   总被引:3,自引:0,他引:3  
戴红  张新申  蒋小萍 《中国皮革》2001,30(21):10-12
比较详细地描述了用现代色谱分离的试验方法.用本实验室自制的弱阳离子交换树脂将猪皮胶原的酶水解产物成功地分离为5个组分,并详细讨论了影响分离效果的各种因素,确定了最佳分离条件.  相似文献   

18.
通过DNS法测定小麦木聚糖酶酶促反应的最适条件。结果表明:小麦木聚糖酶酶促反应的最适温度是50℃,最适pH是5.5~6.0,最适底物浓度是1.0000%,最适底物与酶液用量比例为9/1,最适反应时间为5-9min。  相似文献   

19.
文章利用不同温度下Na ,K ∥Cl-,SO2 -4 —H2 O四元体系相图 ,对通过物理方法分离高温盐中一水硫酸镁和氯化钠的工艺条件进行了分析。得出当循环母液和高温盐配成的浆料温度超过 5 5℃ ,浆料液体中氯化镁达到一定浓度时 ,才能分离出纯净的一水硫酸镁和氯化钠。  相似文献   

20.
就皮化材料与清洁化制革的关系、目前传统制革工艺中存在的严重污染问题及针对这些问题近年来采取的新的方法进行了探讨,指出清洁化是我国制革行业的必由之路,清洁化制革工艺与皮化材料的关系非常密切,只有研发出相应新型的、高吸收的、功能型的、易降解型的各类化工材料,才合乎清洁化生产的要求。在制革工艺中采用生物酶制剂辅助浸水脱脂、无硫脱毛与无灰浸碱工艺、无铵脱灰/碱等改造传统工艺,减少污染;采取高吸收铬鞣、无铬或少铬鞣制,提高铬的吸收率或克服铬鞣的弊端;在染整中,合成并采用助剂辅助染料、复鞣剂和加脂剂等的吸收与结合。这几方面通过集成应用,方可减轻制革的污染,实现清洁化生产。同时,就皮革固废物的利用及水的循环使用问题提出些看法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号