首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
麦胚富集γ-氨基丁酸的培养条件优化   总被引:2,自引:0,他引:2  
采用水浴保温的方法对麦胚中γ-氨基丁酸(GABA)进行富集,研究了培养温度、时间、液料比和培养液pH对麦胚中GABA含量和谷氨酸脱羧酶(GAD)活性的影响,采用响应面法对麦胚富集GABA的培养条件进行了优化。结果表明,在一定范围内培养温度、时间、液料比和培养液pH可有效提高麦胚中GAD活性,促进GABA积累。Box-Behnken实验结果显示,麦胚富集GABA的最优培养条件为培养温度46℃,时间1.5h,液料比6∶1(mL/g),培养液pH4.6。在此培养条件下,麦胚中GABA最大富集量为36.78mg/g,是麦胚原料的5.51倍。方差分析表明,所建的回归模型能够很好的预测麦胚中GABA富集量的变化。  相似文献   

2.
以青稞麸皮为原料,利用内源谷氨酸脱羧酶(GAD)和外源添加谷氨酸钠及磷酸吡哆醛(PLP)富集γ-氨基丁酸(GABA)。在比较不同品种GABA富集能力差异的基础上,采用以pH值、料液比、外源谷氨酸钠和磷酸吡哆醛浓度、反应温度和时间为变量的单因素实验和正交试验方法,得到GABA富集的优化工艺条件。结合青稞麸皮分级制备GABA的比较试验结果,建立GABA的高效制备方法:麸皮脱皮率4.23%~6.43%,料液比140∶1(g/L),反应时间12 h,反应温度35 ℃,添加谷氨酸钠浓度为8 mmol/L,PLP浓度为18 μmol/L。利用该方法获得的GABA最高产量为19.57 mmol/L,外源底物转化率在97%以上。  相似文献   

3.
以培养液中添加金属离子等物质对麦胚中γ–氨基丁酸(γ-amino butyric acid,GABA)进行富集研究。通过Plackett-Burman试验设计考察了11种添加物对麦胚富集GABA的影响,对呈显著正效应的添加物采用中心组合试验设计(CCD)对其最适浓度进行优化。结果表明,CaCl2,LiCl,CuSO4,NaCl和Glu对麦胚GABA富集有显著正效应;CCD设计优化的培养液组分为CaCl2浓度2.48 mmol/L,NaCl为3.95 mmol/L,Glu为1.66 mmol/L,在此条件下麦胚中GABA含量达到53.37 mg/g,是原料的8.00倍。表明优化后的培养液组分能显著提高麦胚中GABA含量。  相似文献   

4.
杨胜远  韦锦  曾婵  彭罗慧 《食品科学》2018,39(14):151-157
通过对732阳离子交换树脂对屎肠球菌谷氨酸脱羧酶(glutamate decarboxylase,GAD,EC4.1.1.15)活性的影响进行探讨,构建了732阳离子交换树脂-细胞GAD复合转化体系。结果表明:经含0.2?mol/L?L-谷氨酸(L-glutamic acid,L-Glu)的0.2?mol/L乙酸-乙酸钠缓冲液(pH?4.2)平衡的732阳离子交换树脂可显著提高屎肠球菌细胞GAD的转化活性,γ-氨基丁酸(γ-aminobutyric acid,GABA)产量较对照组增加了32.30%;L-Glu/谷氨酸一钠(monosodium glutamate,MSG)(2∶1)固体混合物能有效调节反应体系的pH值和维持反应液的底物浓度,显著增加GABA产量,当添加量为30?g/L时,GABA产量较不添加L-Glu/MSG(2∶1)固体混合物的对照组提高了52.40%;732阳离子交换树脂与L-Glu/MSG(2∶1)固体混合物对细胞GAD的转化活性具有协同促进作用,适宜的732阳离子交换树脂-细胞GAD复合转化体系组成为732阳离子交换树脂10?g、0.3?mol/L?MSG溶液(溶于0.2?mol/L乙酸-乙酸钠缓冲液,pH?4.2)10?mL、100?mg/mL屎肠球菌细胞悬液10?mL和L-Glu/MSG(2∶1)混合物30?g/L。在该反应体系下,80?r/min、40?℃水浴振荡器反应24?h,GABA产量为(4.57±0.11)mmol,较对照组GABA产量((2.29±0.08)mmol)提高了99.56%。  相似文献   

5.
研究了玉米胚谷氨酸脱羧酶(GAD)的性质。结果表明:玉米胚GAD的最适温度为40℃,最适pH为5.7,其热稳定较差,60℃下保温1 h,酶活下降至39%,85℃时酶完全失活,而此酶在pH4.5~7.5可保持80%以上的酶活。玉米胚GAD对Glu的Km值和Vmax分别为51.87 mmol/L和1.807 mg/min。另外,KCl、NaCl和SDS对玉米胚GAD活性有较大的抑制作用,而Ca2+对此酶的活性有较强的激活作用,可提高底物与玉米胚GAD的亲和力。  相似文献   

6.
大米胚芽中γ-氨基丁酸的富集   总被引:9,自引:1,他引:9  
研究了大米胚芽中富集γ-氨基丁酸(GABA)的工艺,通过 正交实验得到最佳富集工艺条件是:料水比1:7,温度为 50℃,时间为2h,pH5.6,GABA的产量由未富集前的 0.28mg/g提高到约4mg/g。并研究了不同溶剂脱脂对 GABA富集的影响,维生素B_6的添加对GABA产量的提 高,以及比较了玉米胚芽和小麦胚芽中GABA的富集。  相似文献   

7.
采用浸渍处理方法,对鲜切南瓜富集γ-氨基丁酸(γ-aminobutyric acid, GABA)的工艺和浸渍液组分进行研究。在单因素试验的基础上,通过正交试验优化了鲜切南瓜富集GABA的工艺条件,采用响应面试验设计对影响鲜切南瓜GABA富集的浸渍液组分进行了优化。结果得出,鲜切南瓜富集GABA的最佳工艺为浸渍时间4 h、浸渍温度40℃、浸渍液pH 5.8。极差分析表明,浸渍温度是最主要的影响因素,浸渍时间次之,最后是浸渍液pH。在最佳浸渍工艺下,鲜切南瓜中GABA的含量为0.291 mg/g,是原料中GABA含量的5.43倍; Box-Behnken设计优化的最优浸渍液组分为CaCl_2浓度3.35 mmol/L、谷氨酸钠(MSG)质量浓度10.24 mg/mL和VB_6浓度0.37 mmol/mL,在此条件下鲜切南瓜中GABA含量为0.569 mg/g,是原料的10.62倍,说明浸渍液中添加了外源物质能显著提高鲜切南瓜中GABA含量。方差分析表明,所建的回归模型显著,能很好地预测鲜切南瓜中GABA含量的变化。  相似文献   

8.
发芽蚕豆富集γ-氨基丁酸的培养液组分优化   总被引:1,自引:1,他引:0  
以蚕豆为试材,研究谷氨酸钠(MSG)、CaCl2、和VB6对发芽蚕豆谷氨酸脱羧酶(GAD)及γ-氨基丁酸(GABA)的影响,采用Box-behnken设计对发芽蚕豆富集GABA的培养液组分进行了优化,并对发芽蚕豆富集GABA的二次回归模型进行分析。结果表明,低氧联合盐胁迫下,MSG、CaCl2和VB6对发芽蚕豆GAD及GABA的影响均达到显著水平(P<0.005)。经过回归分析建立了GABA含量对培养液组分的二次回归模型,回归方程的决定系数达到0.976,说明方程能很好的预测GABA富集含量的变化。蚕豆富集GABA的最适培养液组分为MSG 1.1 mg/mL、CaCl2 6.1 mmol/L、VB6 72μmol/L,此时,GABA富集量达到(1.98±0.09)mg/g DW,为对照[(1.08±0.01)mg/g DW]的1.83倍。  相似文献   

9.
以米糠为原料,利用米糠中高活性谷氨酸脱羧酶(GAD)进行γ-氨基丁酸(GABA)的富集实验,并采用阳离子交换树脂对富集液中GABA进行分离纯化。结果表明:采用0.02mol/LpH5.6的Na2HPO4-柠檬酸缓冲液进行GABA富集实验,反应16h后可得到GABA2900mg/100g米糠。采用D001大孔强酸性阳离子交换树脂对该富集液进行纯化实验,调节富集液pH2.0,以2mg/mL的浓度上样吸附,2mol/L的氨水浓度进行洗脱,最终可得γ-氨基丁酸纯度61.25%。  相似文献   

10.
胰蛋白酶水解富集米胚芽中γ-氨基丁酸的研究   总被引:2,自引:0,他引:2  
张晖  姚惠源 《食品科学》2005,26(2):127-130
研究了胰蛋白酶水解米胚蛋白富集γ-氨基丁酸(GABA)的工艺,通过单因素实验和正交实验等确定了最佳的米胚芽水解并富集GABA的工艺条件,即料水比为1/14,温度为40℃,加酶量为4080U/100g米胚芽,反应7h后,加入1.5g/100ml的米胚芽,40℃继续反应6h,GABA产量可达2.26g/100g,比未富集前的0.028g/100g提高了80倍。  相似文献   

11.
研究了AOT/异辛烷反胶束法萃取玉米胚芽蛋白及玉米胚芽蛋白的加工功能性。在实验中分别考察了纤维素酶加酶量、AOT浓度、KCl浓度、缓冲液pH值、W0对玉米胚芽蛋白前萃率的影响,以及萃取时间、KCl浓度、缓冲液pH值对后萃率的影响,确定了前萃的最佳技术条件:加酶量为4 000 IU/g玉米胚芽、AOT浓度为3 g/50 mL异辛烷、萃取pH 6、KCl浓度0.1 mol/L、W0为25;后萃的最佳技术条件为:KCl浓度为0.5 mol/L、萃取pH 10.5,萃取时间40 min;对玉米胚芽蛋白的部分加工功能性进行研究,结果表明其吸油性(2.9 mL/g)、乳化性(54.5%)、乳化稳定性(86.5%)以及泡沫稳定性(58.3%)都较好,但吸水性和起泡性相对较差,玉米胚芽蛋白不但营养效价高,而且具有较好的加工功能特性,在食品工业中具有应用潜力。  相似文献   

12.
发芽和提取条件对玉米胚芽中超氧化物歧化酶的诱导作用   总被引:1,自引:0,他引:1  
为提高玉米超氧化物歧化酶(SOD)的活力和提取率,在不同条件下对玉米进行发芽处理,从发芽玉米中剥离胚芽,并在磷酸缓冲液中浸泡,再提取SOD,并测定SOD总活力。结果表明:玉米在30℃、有光照条件下发芽4d,剥离的40g胚芽在0.05mol/L 200mL磷酸缓冲液中浸泡36h,通过胶体磨研磨浸提1h,60℃热沉淀15min,用1.5倍-20℃的丙酮沉淀SOD,经Cellulose-DE-52层析,再经SephadexG-75层析,得到的玉米SOD比活力最高,为4487.28U/mg pro,比未发芽的玉米胚芽提取的SOD的比活力(924.18U/mg pro)提高了3.86倍。  相似文献   

13.
100g玉米中加入200mL pH7.80·05mol/L的磷酸缓冲液,40℃下浸泡36h后将玉米淋干,将胚芽与胚乳分离、破碎。从胚芽中提取SOD,SOD酶活最高达到371·55U/g玉米,是未浸泡玉米胚芽的15·8倍;破碎的胚乳∶75%(V)酒精=1∶6混合后,60℃下浸提2h,获得醇溶蛋白。一次浸提醇溶蛋白的提取率为78·94%,比对照提高了20·91%,二次浸提提取率达为93·3%。最后,将提取SOD和醇溶蛋白的玉米残渣进行酒精发酵,同时与采用干法粉碎和湿法粉碎的玉米粉进行对比,其淀粉出酒率分别为53·50%、53·56%和53·51%。  相似文献   

14.
通过对全细胞和纯酶的对比分析,从732阳离子交换树脂对细胞转化体系pH、产物效应和底物效应的影响,对732阳离子交换树脂促进屎肠球菌全细胞谷氨酸脱羧酶(glutamate decarboxylase,GAD,EC4.1.1.15)活力的机制进行了探讨。结果显示:γ-氨基丁酸(γ-aminobutyric acid,GABA)对全细胞GAD活性具有抑制作用,而L-谷氨酸(L-glutamic acid,L-Glu)却无此现象,并且当L-Glu浓度达到200 mmol/L以上时,全细胞GAD活性才达到最大;在pH4.2~5.8条件下,GABA解离为阳离子较L-Glu多,可与树脂平衡时所结合的L-Glu和H+发生离子交换,补充游离L-Glu,减少游离GABA,稳定反应体系pH。研究表明,732阳离子交换树脂可以通过离子交换作用而释放H+、L-Glu和结合GABA,增加反应液游离底物浓度和降低游离产物浓度,并调节反应液pH,增大细胞内外浓度差,加快细胞内外物质运送速度,从而提高全细胞GAD的表观活力。  相似文献   

15.
利用具有缬氨酸转氨酶活性的工程菌对DL-缬氨酸进行拆分,考察了反应温度、pH值、底物摩尔比、底物浓度和金属离子对酶活性和底物转化率的影响。结果显示,该催化反应的最适反应条件为:反应温度是45℃,pH=9,L-缬氨酸与丙酮酸的摩尔比1∶8,DL-缬氨酸初始浓度为0.6 mol/L、丙酮酸初始浓度为2.4 mol/L,0.5 mmol/L的Mg2+和Na+对酶活性有明显的促进作用。  相似文献   

16.
罗珍连  邓光辉 《食品科学》2017,38(6):197-201
建立毛细管电泳-电化学发光法同时测定荷叶中荷叶碱与莲子心中莲心碱含量的方法。对三联吡啶钉(Ru(bpy)_3~(2+))溶液浓度、检测电位、磷酸盐缓冲液浓度和pH值、进样时间和分离电压等实验条件进行考察和优化。结果表明,在检测电位为1.20 V,运行缓冲液为10 mmol/L磷酸盐缓冲液(pH 5.74),5 mmol/L Ru(bpy)_3~(2+)溶液,检测池内磷酸盐缓冲液浓度为60 mmol/L(pH 8.30),进样电压为8 kV,进样时间为10 s,分离电压为13 kV,荷叶碱检出限为7.7×10~(-7)mol/L(R_(SN)-3),莲心碱检出限为7.8×10~(-7)mol/L(R_(SN)-3)。对浓度为6.8×10~(-5)mol/L荷叶碱和3.1×10~(-5)mol/L莲心碱的标准品溶液进行5次平行测定表明:荷叶碱峰面积的相对标准偏差(relative standard deviation,RSD)为3.76%,迁移时间RSD为0.83%;莲心碱峰面积RSD为4.28%,迁移时间RSD为1.37%。该方法可用于测定荷叶中的荷叶碱与莲子心中莲心碱含量。  相似文献   

17.
刘月  李书倩  张博  刘长江  辛广 《食品科学》2012,33(10):115-118
以软枣猕猴桃为实验材料,确定多聚半乳糖醛酸酶最优提取条件和最适活性分析条件。在提取过程中,以酶比活力为指标确定缓冲液的最适pH值、离子浓度、DTT添加量对PG提取效果的影响,通过正交试验确定最佳提取条件。结果表明:最优提取条件为pH5.5、0.05mol/L 乙酸缓冲液为提取液,加入0.1mol/L NaCl、1mmol/L DTT;最适活性分析条件为反应温度40℃、反应时间90min。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号