首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
考察了试验室规模下超声波处理玉米芯提取木聚糖经酶水解制备低聚木糖的影响因素,通过单因素试验和正交试验,优化了提取和水解条件。结果表明:以质量分数5%Na OH溶液为提取剂,超声功率为180 W,超声温度为60℃的条件下提取45 min,木聚糖产率可达到33.18%。所得提取液经脱色,调p H,调木聚糖底物浓度后酶水解制备低聚木糖。最佳酶解条件为:木聚糖底物质量浓度10 mg/m L,加酶量质量分数1.5%(相对于玉米芯干物料),酶水解时间为8 h的条件下,水解液中还原糖的质量浓度达到6.89 mg/m L。  相似文献   

2.
优化酶解处理油茶籽壳制备低聚木糖的工艺条件。以油茶籽壳为原料,经碱法制备木聚糖粗提液。以所得的木聚糖粗提液为原料,低聚木糖浓度为考核指标,酶解温度、木聚糖酶使用量、酶解时间和木聚糖底物浓度为变量因子,进行单因素试验。在单因素试验基础上,利用响应面法对酶法制备低聚木糖工艺进行优化研究。结果表明,最佳的制备工艺为:酶添加量5%、酶解时间10 h、酶解温度49℃、底物浓度2%。在此优化酶解工艺条件下,测得低聚木糖浓度为11.63 g/L,比未优化前提高4.63 g/L。试验所得到的酶解处理油茶籽壳制备低聚木糖的工艺条件具有实用价值,能为提高利用油料加工副产物油茶籽壳的附加值提供理论依据。  相似文献   

3.
研究对前期筛选的一株产木聚糖酶菌株L10608进行鉴定,判定其为链霉菌。并对该菌株所产木聚糖酶进行纯化得到电泳级纯度木聚糖酶L10608-Xyn11。该酶蛋白质分子量为24 k Da。探究L10608菌株所产木聚糖酶以商品玉米芯木聚糖、商品燕麦木聚糖、自制水不溶性玉米芯木聚糖为底物时的水解特性,结果表明该菌所产木聚糖酶对木三糖有很强的水解作用,以自制水不溶性玉米芯木聚糖为底物水解时效果最为明显,底物中木三糖的含量下降了1.521 mg/m L,产物中木二糖增加了1.635 mg/m L,木糖仅增加了0.180 mg/m L。菌株L10608的酶解产物中低聚木糖的产量远高于木糖,且高产低聚木糖中的主要有效成分木二糖,其水解特异性表明该菌有潜力作为益生元型低聚木糖的生产菌株。  相似文献   

4.
酶水解爆破秸秆制备低聚木糖   总被引:5,自引:1,他引:5  
研究了木聚糖酶水解爆破秸秆制备低聚木糖的工艺,得到如下结论:当爆破秸秆与水质量比为1∶7.5、pH6.0、黑曲霉木聚糖酶添加量为198U/g(干基)、53℃、酶解12h时,可获得较好的酶解效果,酶解液总糖含量达到49.80mg/mL,还原糖含量达到17.03mg/mL、木聚糖水解率达到63.77%(对原料木聚糖)、木聚糖平均聚合度降至3.10;酶解产物中低聚糖主要为木二糖和木三糖,低聚木糖含量达到50.80%(对固形物)。  相似文献   

5.
采用碱法提取制备玉米芯木聚糖,以提取率为指标,研究了碱液浓度、提取温度、处理时间、提取振荡速度、醇沉p H等因素对提取率的影响,通过木聚糖酶酶解木聚糖提取低聚木糖,以酶解产物中还原糖含量、可溶性总糖含量及平均聚合度DP为指标,采用正交试验探讨了酶浓度、酶解温度、酶解时间、p H值、底物浓度对酶解产物的影响,得出酶解玉米芯木聚糖制备低聚木糖的最佳工艺条件为:底物浓度为12%(w/v),酶解p H为4,酶解温度为45℃条件下添加0.06%(w/v)的木聚糖酶,酶解8h,得到总糖含量为18.88mg/m L,还原糖含量为9.46 mg/m L,聚合度DP为1.85。  相似文献   

6.
《食品与发酵工业》2015,(4):115-120
研究了蒸煮法及碱提法对玉米芯木聚糖的提取效果,并利用重组木聚糖酶Xyn A对玉米芯低聚木糖的酶解制备条件进行了优化。对木聚糖得率及酶解产物进行了分析,确定碱提法所得玉米芯木聚糖适宜作为酶解底物制备低聚木糖。优化后得到酶解制备玉米芯低聚木糖的工艺条件:底物浓度0.9%,酶解温度49℃,酶解时间4.5 h,还原糖量可达33.9%。另外,对酶解成分进行分析,结果表明酶解碱提玉米芯木聚糖可产生以木二糖及木三糖为主要成分的低聚木糖。  相似文献   

7.
本文研究了利用自筛菌株酶法制备棉籽壳低聚木糖的基本工艺。低聚木糖是主要的功能性食品添加剂,棉籽壳是生产低聚木糖的良好来源。因此,如何有效的从棉籽壳中提取低聚木糖成为亟待解决的问题。本研究中通过筛选鉴定(法国梅里埃生物自动识别系统)得到一株新的产内切型木聚糖酶的菌株-少动鞘氨醇单孢菌。通过酶解木聚糖工艺的优化,结果表明:当酶解温度为30℃,酶解8 h,木聚糖酶的浓度15%,底木聚糖浓度为40 g/L时,低聚木糖的得率可达到53.20%,经HPLC分析,酶解野种木二糖和木三糖占低聚木糖总量的48.56%,低聚木糖占总糖的82%以上,以上研究可为工业生产低聚木糖工艺的优化提供依据。  相似文献   

8.
本文以橄榄绿链霉菌E-86产木聚糖酶水解玉米芯汽爆液生产低聚木糖为目的,研究了玉米芯汽爆液的水解特征,并与玉米芯木聚糖的酶解产物组成进行了比较,得到如下结果:加酶量120U/100ml、酶解反应8h可获得较好的酶解效果,直接还原糖量46μmol/ml、平均聚合度3.1、水解率46%;玉米芯汽爆液和玉米芯木聚糖的酶解产物中低聚糖组成大致相同,主要是木二糖和少量的木三糖、木糖,汽爆液酶解产物中还含有极少量的鼠李糖和阿拉伯糖;玉米芯汽爆液可代替玉米芯木聚糖为底物生产低聚木糖。  相似文献   

9.
碱法提取木聚糖的酶法水解   总被引:14,自引:0,他引:14  
在进行碱法提取木聚糖的酶法水解时,采用3%~4%的底物浓度和20U/g底物的加酶量比较合适。在优化的条件下,产品的低聚木糖含量达到79.1%(对总糖),得率达到66.8%。以去除阿拉伯糖侧链为目的,稀酸预水解对随后的碱法提取木聚糖的酶水解作用不大。这表明在木聚糖的酶水解过程中,阿拉伯糖侧链与整个木聚糖的水解同步进行。  相似文献   

10.
本研究以棉籽壳水不溶性粗木聚糖为底物,考察超声耦合酶解棉籽壳木聚糖制备低聚木糖的工艺条件。通过单因素实验以及Box-Behnken响应面实验对低聚木糖的制备工艺进行了优化。实验结果显示,最佳超声耦合酶解条件为时间42 min,温度45℃,反应体系p H=5.1,超声频率40 k Hz,超声强度0.22 W/cm2,还原糖总量达到最高50.46%。经HPLC分析,木二糖的含量占粗棉籽壳木聚糖的29.38%,占还原糖总量58.22%。  相似文献   

11.
采用可逆溶解性聚合物EudragitL-100对球毛壳菌木聚糖酶进行了吸附固定化。在1.0%EudragitL-100浓度时获得10.6IU/mg载体的固定化酶活和88.47%的酶活回收。酶固定化后最适温度不变,最适pH向碱性方向移动了一个pH单位。固定化酶热稳定性和操作稳定性显著提高,循环利用6次仍保留65%初始酶活。木聚糖水解产物测定表明,在同酶用量的条件下固定化后总还原糖产量明显高于游离酶,二者水解产物均以低聚糖为主,酶固定化后水解产物木二糖含量显著高于游离酶,成为主要的产物。木聚糖酶固定化后各方面特性明显优于游离酶,在低聚糖生产中有实际应用价值。  相似文献   

12.
以Bacillus pumlis.木聚糖酶水解玉米芯制备木寡糖   总被引:4,自引:0,他引:4  
木聚糖酶对 Birch wood,Oat spelt和自制玉米芯木聚糖的水解结果表明,不同来源的木聚糖对木聚糖酶水解的影响非常明显,硬本属的 Birch wood的水解效果较好,自制玉米芯木聚糖的水解效果优于同属于禾本科的 Oat Spelt。自制玉米芯木聚糖的水解结果表明,可溶性木聚糖能够被木聚糖酶有效水解而不溶性木聚糖几乎不被水解,长链木聚糖比短链木聚糖更容易被木聚糖酶水解。采用HPLC对自制玉米芯木聚糖水解液的组成进行分析,结果表明,水解液中低聚木糖的主要成分为木二糖、木三糖和木四糖,占水解液中总糖的80%以上。  相似文献   

13.
从顶青霉(Penicillium corylophilum)培养液中分离纯化得到的3种木聚糖酶组分(Part A,Part B和Part C),对其水解动力学和水解模式的研究结果表明,3种木聚糖酶的动力学常数(桦木木聚糖为底物)分别为Part A,K  相似文献   

14.
利用玉米芯木聚糖酶法制备低聚木糖的研究   总被引:1,自引:0,他引:1  
该文采用源于Thermotoga maritima的木聚糖酶基因工程菌JMl09(DE3)/pET-20b-xynB制备木聚糖酶液,试验结果表明,工程菌产木聚糖酶的最佳诱导条件:诱导剂乳糖浓度为25mmol/L;诱导时间为6h。酶法制备低聚木糖时,采用3%~5%的底物浓度和11.25U/g的酶用量较为适宜。TLC检测海栖热袍菌木聚糖酶水解玉米芯木聚糖的酶解产物主要为木二糖和木三糖。  相似文献   

15.
建立一种木聚糖酶活力的微量测定新方法--3-甲基-2-苯并噻唑酮腙(MBTH)法。根据木聚糖及其酶解产物的特殊性,研究MBTH法的显色条件,并以多点测定法对酶活力测定中的几个关键参数进行探讨。结果表明:蛋白质在其质量浓度低于30μg/mL时对测定无干扰;木聚糖溶液的最佳测定质量浓度为4mg/mL;较高的酶解温度会使木聚糖酶在测定过程中失活,因此,酶活力测定的最佳温度为30℃,而远低于该酶的最适温度;酶解时间为60min以内;酶解产物与MBTH试剂的反应时间应控制在13~16min之间,以15min为最佳。以酶解时间为30min计,本法检测限为0.135mU/mL,定量限为0.451mU/mL,适当延长酶解时间可相应提高酶活力检测灵敏度。该法准确度高,结果稳定,灵敏度远高于DNS法。  相似文献   

16.
采用膜分离提取再生纤维素纤维废液中的半纤维素,确定了工艺参数及半纤维素组成。半纤维素经过酶水解制备低聚木糖,通过正交试验确定了酶水解的工艺参数,分析并测定了低聚木糖的组成和产品应用性能指标。结果表明,选择浓缩倍数为3.5倍时,半纤维素的提取率可达到85%,半纤维素中木糖含量可达79.2%。确定了酶水解的工艺参数,pH为5,酶解温度为55℃,酶解时间为7 h,其低聚木糖得率可达到36.2%。所得低聚木糖的主要成分为木四糖、木三糖、木二糖和木糖,占比可达90.7%。产品性能指标满足饲料级低聚糖干粉国家标准要求,具有很好的应用价值。  相似文献   

17.
Tobacco stalk (TS), a major agricultural waste in the Black Sea region of Turkey, was used for the production of xylooligosaccharides (XOs). It contains about 22 g/100 g xylan whose composition was determined as 93.5 g/100 g xylose, 6.54 g/100 g glucose and 11.2 g/100 g uronic acid after complete acid hydrolysis. XO production was performed by enzymatic and acid hydrolysis of xylan which was obtained by alkali extraction from tobacco stalk. In enzyme hydrolysis, xylan was hydrolyzed using a xylanase preparation and the effects of pH, temperature, hydrolysis period, substrate and enzyme concentrations on the xylooligosaccharide yield and degree of polymerization were investigated. For enzymatic hydrolysis under optimum conditions XO yield with respect to tobacco stalk xylan (TSX) was 8.2 g/100 g after 8 h and 11.4 g/100 g after 24 h reaction period. In the acid hydrolysis, sulfuric acid was used and the hydrolyzate contained different amount of oligosaccharides and monosaccharides. For acid hydrolysis under optimum conditions, XO yield with respect to TSX was 13.0 g/100 g. Enzymatically obtained oligosaccharides were purified via ultrafiltration by using 10 and 3 kDa membranes. After a two-step membrane processing, the permeate containing mostly oligosaccharides was obtained.  相似文献   

18.
Strains of Leuconostoc lactis SHO-47 and Le. lactis SHO-54, producing the clinically useful enzyme NAD-specific 6-phosphoglucanate dehydrogenase, were cultivated with a hydrolyzed birch wood xylan as the unique carbon source to produce D-lactic acid for poly(D-lactic acid). In addition to the strains SHO-47 and SHO-54, Lactococcus lactis IO-1, well known as a good xylose-utilizing lactic acid bacterium, was used as a control to confirm the extent of hemicellulose hydrolysis. The fermentation time for lactic acid of strains SHO-47 and SHO-54 was 12 h, and produced respectively 2.3 and 2.2 g/l lactic acid from 8.5 g/l hydrolyzed xylan, whereas the fermentation time of strain IO-1 was 21 h, and produced 1.3 g/l lactic acid. Xylooligosaccharides from xylobiose to xylohexose were utilized more rapidly than xylose in the cultures of strains SHO-47 and SHO-54. However, xylose concentration increased temporarily and then decreased in the culture of strain IO-1. On the other hand, xylooligosaccharides larger than xyloheptaose were not utilized by these three strains. The xylosidase activities of SHO-47, SHO-54, and IO-1 were induced by xylose or a mixture of xylobiose and xylotriose. The xylosidases of these three strains were localized in their cytoplasm.  相似文献   

19.
Sugarcane bagasse is a useful biomass resource. In the present study, we examined the efficacy of ammonia pretreatment for selective release of hemicellulose from bagasse. Pretreatment of bagasse with aqueous ammonia resulted in significant loss of xylan. In contrast, pretreatment of bagasse with anhydrous ammonia resulted in almost no xylan loss. Aqueous ammonia or anhydrous ammonia-pretreated bagasse was then subjected to enzymatic digestion with a xylanase from the glycoside hydrolase (GH) family 10 or a xylanase from the GH family 11. The hydrolysis rate of xylan in bagasse pretreated with aqueous ammonia was approximately 50 %. In contrast, in the anhydrous ammonia-treated bagasse, xylan hydrolysis was > 80 %. These results suggested that anhydrous ammonia pretreatment would be an effective method for preparation of sugarcane bagasse for enzymatic hydrolysis to recover xylooligosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号