首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
电荷耦合器件(CCD)多晶硅交叠区域绝缘介质对成品率和器件可靠性具有重要的影响。将氮化硅和二氧化硅作为CCD多晶硅层间复合绝缘介质,采用扫描电子显微镜(SEM)和电学测试系统研究了多晶硅层间氮化硅和二氧化硅复合绝缘介质对CCD多晶硅栅间距和多晶硅层间击穿电压的影响。研究结果表明,多晶硅层间复合绝缘介质中的氮化硅填充了多晶硅热氧化层的微小空隙,可以明显改善绝缘介质质量。多晶硅层间击穿电压随着氮化硅厚度的增加而增大,但太厚的氮化硅会导致CCD暗电流明显增大。由于复合绝缘介质质量好,可以减小CCD多晶硅的氧化厚度。  相似文献   

2.
通过大量辐照实验分析了采用不同工艺和不同器件结构的薄膜短沟道CMOS/SIMOX器件的抗辐照特性,重点分析了H2-O2合成氧化和低温干氧氧化形成的薄栅氧化层、CoSi2/多晶硅复合栅和多晶硅栅以及环形栅和条形栅对CMOS/SIMOX器件辐照特性的影响,最后得到了薄膜短沟道CMOS/SIMOX器件的抗核加固方案.  相似文献   

3.
王彩琳  孙丞 《半导体学报》2011,32(2):024007-4
本文基于VDMOS技术提出了一种浅沟槽平面栅MOSFET(TPMOS)新结构,其中浅沟槽位于VDMOS多晶硅平面栅下方n-漂移区的两元胞中央。与传统的VDMOS结构相比,新结构不仅可以显著改善器件的导通电阻(RON)和击穿电压(VBR),减小它们对栅极长度的依赖,而且除浅沟槽外,制作工艺与VDMOS完全兼容。采用TPMOS结构可为器件设计和制造提供更大的自由度。  相似文献   

4.
郭丽莎  夏洋 《现代电子技术》2009,32(20):200-202
分析影响VDMOS开关特性的各部分电容结构及参数,为了减少寄生电容,提高开关速度,在此提出一种减少VDMOS寄生电容的新型结构.该方法是部分去除传统VDMOS的neck区多晶硅条,并利用多晶硅作掩模注入P型区,改变VDMOS栅下耗尽区形状,减小寄生电容.在此增加了neck区宽度,并增加了P阱注入.利用TCAD工具模拟,结果表明:这种新型结构与传统VDMOS相比,能有效减小器件的寄生电容,减少橱电荷量,提高开关时间,提高器件的动态性能.  相似文献   

5.
SiC VDMOS特性的影响因素分析   总被引:1,自引:0,他引:1  
研究了材料、栅氧化层厚度和沟道长度对SiC VDMOS结构特性的影响.结果表明,4H-SiC器件具有更高的电流密度,因此,4H-SiC比6H-SiC更适合用于功率器件.对阈值电压和漏极电流的分析表明,在Vds= 0.1 V、Vgs=15 V时,阈值电压随栅氧化层厚度的增大而线性增大,随沟道长度的增加而增大;而漏极电流密度则随栅氧化层厚度的增加而减小,随沟道长度的增加而减小.  相似文献   

6.
随着半导体工艺的不断发展,器件的特征尺寸在不断缩小,栅氧化层也越来越薄,使得器件受到静电放电破坏的概率大大增加。为此,设计了一种用于保护功率器件栅氧化层的多晶硅背靠背齐纳二极管ESD防护结构。多晶硅背靠背齐纳二极管通过在栅氧化层上的多晶硅中不同区域进行不同掺杂实现。该结构与现有功率VDMOS制造工艺完全兼容,具有很强的鲁棒性。由于多晶硅与体硅分开,消除了衬底耦合噪声和寄生效应等,从而有效减小了漏电流。经流片测试验证,该ESD防护结构的HBM防护级别达8 kV以上。  相似文献   

7.
借助电脑软件仿真深入研究了VDMOS电场分布特性,并且从数学角度研究了VDMOS漂移区垂直方向上电压降落的情况。建立了VDMOS准饱和特性的数学模型,给出了VDMOS工作在临界准饱和区域的栅极电压的计算方法,为器件工作的安全区域设定了边界条件。在研究过程中发现,VDMOS漂移区垂直方向上的电场最大值出现的位置基本固定不变,它不随着栅极电压、漂移区掺杂浓度和栅氧厚度的变化而变化,而是随着漏电压的变化而变化,这主要是由于漂移区内B区域横截面积和电子速度都在随着栅极电压的增大而增大造成的。此结论不仅为文中准饱和模型的创建提供了一种简便的方法,而且对以往模型的简化和改进提供了理论依据。  相似文献   

8.
多晶硅表面对于电荷耦合器件(CCD)的制作非常重要。采用扫描电子显微镜(SEM)和电学分析技术研究了低压化学气相(LPCVD)法淀积的多晶硅形貌对击穿特性的影响。研究结果表明,减小多晶硅表面颗粒尺寸有助于改善多晶硅氧化层击穿特性。多晶硅氧化层击穿特性与多晶硅和绝缘层交界面的平滑度有关。多晶硅薄膜表面平整度变差,则多晶硅与氧化层之间的界面平滑性变差,多晶硅介质层击穿强度降低。  相似文献   

9.
从结构上对一种N沟道VDMOS器件的寄生电容进行研究,确定了栅氧化层厚度和多晶线宽是影响VDMOS器件寄生电容的主要因素;使用TCAD工具,对栅氧化层厚度和多晶线宽的变化对各个寄生电容的影响进行半定量分析,得到栅氧化层厚度每变化1 nm,关断时间变化4.9 ns和多晶线宽每变化0.2 μm,关断时间变化2.7 ns的结论,与实际测试结果吻合较好.将该结论用于100 V/N沟道VDMOS器件关断时间的精确控制,关断时间控制精度达到±10 ns,满足VDMOS芯片制造要求.  相似文献   

10.
本文研究了用稳态的C_0~(60)对采用热解和干法栅氧化制作的多晶硅栅MOS电容器进行辐照时,栅氧化温度对电容器的辐照诱生平带和阈值电压漂移以及界面态建立的影响。在850℃下生长的热解氧化层,其辐照诱生平带电压漂移和阈值电压漂移可达到最小值。计算了低温热解氧化层MOS电容器的阈值电压和平带电压漂移与总剂量效应辐照时外加栅偏压以及氧化层厚度的依赖关系。我们获得了辐照诱生界面态与总剂量和氧化层厚度两者的关系均为2/3幂指数关系。  相似文献   

11.
This paper proposes a new shallow trench and planar gate MOSFET(TPMOS) structure based on VDMOS technology,in which the shallow trench is located at the center of the n~- drift region between the cells under a planar polysilicon gate.Compared with the conventional VDMOS,the proposed TPMOS device not only improves obviously the trade-off relation between on-resistance and breakdown voltage,and reduces the dependence of on-resistance and breakdown voltage on gate length,but also the manufacture process is compatible with that of the VDMOS without a shallow trench,thus the proposed TPMOS can offer more freedom in device design and fabrication.  相似文献   

12.
减小VDMOS密勒电容和反向恢复电荷的研究   总被引:2,自引:0,他引:2  
提出了在VDMOS FET中减小密勒电容和反向恢复电荷的一种新结构,该结构结合了肖特基接触和分段多晶硅栅的方法。数值分析仿真结果表明,在相同器件单元尺寸下,该结构优于常规VDMOS FET,密勒电容Cgd可减少73.25%,Qgd和导通电阻优值减小65.02%,显示出很好的Qgd*Rds(on)改善性能;同时,反向恢复电荷减少了40.76%。  相似文献   

13.
The quantum-mechanical behavior of charge carriers at the polysilicon/oxide interface is investigated. It is shown that a dark space depleted of free carriers is created at the interface as a consequence of the abrupt potential energy barrier, which dominates the polysilicon capacitance and voltage drop in all regions of operation of modern MOS devices. Quantum-mechanical effects in polysilicon lead to a reduction in the gate capacitance in the same way as substrate quantization, and to a negative voltage shift, which is opposed to the positive shift caused by carrier quantization in the channel. Effects on the extraction of device physical parameters such as oxide thickness and polysilicon doping are also addressed.  相似文献   

14.
A novel silicon carbide UMOSFET structure is reported. This device incorporates two new features: a self-aligned p-type implantation in the bottom of the trench that reduces the electric field in the trench oxide, and an n-type epilayer under the p-base to promote lateral current spreading into the drift region. This UMOS structure is capable of supporting the full blocking voltage of the pn junction while keeping the electric field in the gate oxide below 4 MV/cm. An accumulation channel is formed on the sidewalls of the trench by epigrowth, and the gate oxide is produced by a polysilicon oxidation process, resulting in a uniform oxide thickness over both the sidewalls and bottom of the trench. The fabricated 4H-SiC devices have a blocking voltage of 1400 V (10 μm drift region), a specific on-resistance of 15.7 mΩ-cm 2 at room temperature, and a gate oxide field of 3 MV/cm  相似文献   

15.
在前期对双掺杂多晶Si栅(DDPG)LDMOSFET的电场、阈值电压、电容等特性所作分析的基础上,仍然采用双掺杂多晶Si栅结构,以低掺杂漏/源MOS(LDDMOS)为基础,重点研究了DDPG-LDDMOSFET的截止频率特性.通过MEDICI软件,模拟了栅长、栅氧化层厚度、源漏区结深、衬底掺杂浓度以及温度等关键参数对器件截止频率的影响,并与相同条件下P型单掺杂多晶Si栅(p-SDPG)MOSFET的频率特性进行了比较.仿真结果发现,在栅长90 nm、栅氧厚度2 nm,栅极P,n掺杂浓度均为5×1019cm-3条件下,截止频率由78.74 GHz提高到106.92 GHz,幅度高达35.8%.此结构很好地改善了MOSFET的频率性能,得出的结论对于结构的设计制作和性能优化具有一定的指导作用,在射频领域有很好的应用前景.  相似文献   

16.
基于对功率VDMOS器件ESD保护及初始条件的分析,建立了VDMOS器件的ESD保护等效电路,分析了ESD响应过程,得到功率VDMOS器件的ESD瞬态模型. 分析结果表明,该模型准确地描述了功率VDMOS器件的ESD瞬态放电过程,解决了以往模型中初始条件分析不足等问题. 借助该模型,获得ESD器件的等效电阻和击穿电压、VDMOS的栅极输入电阻、栅源电容、栅氧厚度等与功率VDMOS器件抗ESD能力的关系,为功率VDMOS器件的抗ESD保护设计提供重要指导.  相似文献   

17.
Previous measurements of interface trapped charge (ITC) by charge pumping used long-channel metal gate transistors. In this paper charge pumping is extended to short-channel Self-aligned polysilicon gate transistors and used to determine the spatial variation of ITC on wafers. Only the MOSFET gate area and a pulse frequency are required to calculate ITC density from the charge pumping current. In previous work, with long-channel devices, it appears that some investigators used the design dimension of metal gate devices and others used the metallurgical channel length of the transistors to calculate gate area. Two-dimensional simulation of the charge pumping measurement showed that, for a sufficient applied pulse height voltage, the correct area is obtained if the polysilicon gate length and width asmeasured are used. When the process-induced variation of the polysilicon gate length is included in the measurement analysis, no systematic variation of ITC is observed across 5 cm wafers. The charge pumping measurement technique on short-channel MOSFET's can be used to resolve the spatial variation of ITC if the area variations are correctly handled. The measurement of ITC is linear with frequency from 1 kHz to 1 MHz, indicating that the emission time constant of the fast states measured using this method is ≤10-6s. A variation of ITC with channel lengths is also observed. This variation could not be detected using large area devices such as capacitors, but will have important consequences for short-channel MOSFET's.  相似文献   

18.
Previously, we proposed n+-p+ double-gate SOI MOSFET's, which have n+ polysilicon for the back gate and p+ polysilicon for the front gate to enable adjustment of the threshold voltage, and demonstrated high speed operation. In this paper, we establish analytical models for this device, This transistor has two threshold voltages related to n+ and p+ polysilicon gates: Vth1 and Vth2, respectively. V th1 is a function of the gate oxide thickness tOx and SOI thickness tSi and is about 0.25 V when tOx/tSi=5, while Vth2 is insensitive to tOx and tSi and is about 1 V. We also derive models for conduction charge and drain current and verified their validity by numerical analysis. Furthermore, we establish a scaling theory unique to the device, and show how to design the device parameters with decreasing gate length. We show numerically that we can design sub 0.1 μm gate length devices with an an appropriate threshold voltage and an ideal subthreshold swing  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号