首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
杨胜远  韦锦  曾婵  彭罗慧 《食品科学》2018,39(14):151-157
通过对732阳离子交换树脂对屎肠球菌谷氨酸脱羧酶(glutamate decarboxylase,GAD,EC4.1.1.15)活性的影响进行探讨,构建了732阳离子交换树脂-细胞GAD复合转化体系。结果表明:经含0.2?mol/L?L-谷氨酸(L-glutamic acid,L-Glu)的0.2?mol/L乙酸-乙酸钠缓冲液(pH?4.2)平衡的732阳离子交换树脂可显著提高屎肠球菌细胞GAD的转化活性,γ-氨基丁酸(γ-aminobutyric acid,GABA)产量较对照组增加了32.30%;L-Glu/谷氨酸一钠(monosodium glutamate,MSG)(2∶1)固体混合物能有效调节反应体系的pH值和维持反应液的底物浓度,显著增加GABA产量,当添加量为30?g/L时,GABA产量较不添加L-Glu/MSG(2∶1)固体混合物的对照组提高了52.40%;732阳离子交换树脂与L-Glu/MSG(2∶1)固体混合物对细胞GAD的转化活性具有协同促进作用,适宜的732阳离子交换树脂-细胞GAD复合转化体系组成为732阳离子交换树脂10?g、0.3?mol/L?MSG溶液(溶于0.2?mol/L乙酸-乙酸钠缓冲液,pH?4.2)10?mL、100?mg/mL屎肠球菌细胞悬液10?mL和L-Glu/MSG(2∶1)混合物30?g/L。在该反应体系下,80?r/min、40?℃水浴振荡器反应24?h,GABA产量为(4.57±0.11)mmol,较对照组GABA产量((2.29±0.08)mmol)提高了99.56%。  相似文献   

2.
以米糠为原料,利用米糠中高活性谷氨酸脱羧酶(GAD)进行γ-氨基丁酸(GABA)的富集实验,并采用阳离子交换树脂对富集液中GABA进行分离纯化。结果表明:采用0.02mol/LpH5.6的Na2HPO4-柠檬酸缓冲液进行GABA富集实验,反应16h后可得到GABA2900mg/100g米糠。采用D001大孔强酸性阳离子交换树脂对该富集液进行纯化实验,调节富集液pH2.0,以2mg/mL的浓度上样吸附,2mol/L的氨水浓度进行洗脱,最终可得γ-氨基丁酸纯度61.25%。  相似文献   

3.
通过单因素试验和正交试验,优化了糙米湿润活性化富集γ-氨基丁酸(γ-aminobutyric acid,GABA)的雾化液p H值、VB6及Ca Cl2浓度,同时研究了最优条件下活性化糙米谷氨酸脱羧酶活力及主要物质含量变化。结果表明:最优培养条件为雾化液p H 3.5、VB6浓度2 mmol/L和Ca Cl2浓度10 mmol/L;在此条件下,活性化糙米中GABA含量可达7.67 mg/100 g,为原料糙米的2.74倍。随着活性化时间的延长,糙米中游离氨基酸、还原糖含量及谷氨酸脱羧酶活力呈现逐渐增加的趋势,可溶性蛋白及淀粉含量呈现逐渐下降趋势。相关性分析表明,GABA含量与谷氨酸、游离氨基酸、可溶性蛋白含量之间均显著相关。  相似文献   

4.
采用基因组挖掘技术,以来源于Lactobacillus brevis活性较高的谷氨酸脱羧酶(glutamate decarboxylase,GAD)LbGAD为探针,从乳酸菌(Lactococcus lactis、Lactobacillus senmaizukei)和肠球菌(Enterococcus sulfureus)的基因组中挖掘到了3 个假定的GAD基因(LlGAD、LsGAD和EsGAD)。借助pET28a质粒分别实现了这4 个基因在大肠杆菌BL21中的表达,其中LsGAD和LlGAD的表达产物可溶性较好,相应发酵液中GAD活力分别为34.17、38.91 U/mL。LsGAD的比活力、温度特性、pH值特性和Kcat/Km值也明显优于其他几个酶。此外,初步研究了全细胞催化L-谷氨酸制备γ-氨基丁酸(γ-aminobutyric acid,GABA)的工艺,6 g/L的L-谷氨酸经过24 h转化后,GABA得率最高可达58%。本研究实现了GAD从基因组数据到真实酶的跨越,获得了1 个性能优良的GAD,并初步实现了GABA的生物合成,为实现GABA低成本、规模化的生物合成提供了科学依据。  相似文献   

5.
研究反应pH值、反应温度、重金属盐、表面活性剂、底物浓度、菌体质量浓度和磷酸吡哆醛添加量对Streptococcus salivarius subsp.thermophilus Y-2细胞转化法生产γ-氨基丁酸的影响。获得反应体系的最佳组成为:湿菌体25g/L、BaCl2 40mmol/L、Triton X-100体积分数0.02%、L-谷氨酸单钠盐(L-monosodium glutamate,MSG)47.5g/L和L-谷氨酸(L-glutamic acid,L-Glu)90.0g/L。该体系在40℃、pH 4.5和搅拌速度100r/min的最适转化条件下进行反应72h,转化液GABA产量达到了(87.16±4.33)g/L,细胞平均生产力为(48.42±2.41)mg/(h.g),摩尔转化率为(97.60±4.71)%。  相似文献   

6.
γ-氨基丁酸是一种重要的生物活性因子,通过谷氨酸脱羧酶(GAD)使L-谷氨酸脱羧而合成。作者首先将酿酒酵母谷氨酸脱羧酶基因进行克隆并实现其在大肠杆菌中表达。通过亲和层析纯化获得了比活力高达66.55 U/mg的重组酶ScGAD。进一步酶学性质分析结果表明,ScGAD最适反应温度为60 ℃,最适反应pH 为4.0,且在30~50 ℃、pH 4.0~9.0时表现出优越的稳定性;其动力学参数Km为14.28 mmol/L,对L-谷氨酸具有较好的亲和力。最后通过全细胞制备γ-氨基丁酸(GABA)的最适条件探究,得到GABA生成效率最高的条件为60 ℃、pH 4.0,在此条件下,100 mmol/L底物L-谷氨酸经全细胞催化可合成GABA 35.9 g/(g·h)。该研究为GABA高效生产提供依据。  相似文献   

7.
对生鲜南瓜(Cucurbita moschata)所含谷氨酸脱羧酶(Glutamate decarboxylase,GAD)的最适反应温度、最适pH、热稳定性和冷冻稳定性等酶学特性进行研究,并利用其富集γ-氨基丁酸(γ-Aminobutyric acid,GABA),探索了反应时间、南瓜品种、缓冲体系、南瓜及味精添加量、料水比对富集效果的影响。结果表明,南瓜GAD最适反应温度为30~35 ℃,最适pH为5.8。南瓜GAD对热比较敏感,50 ℃保温30 min,酶活力损失20%,70 ℃以上保温30 min可导致酶活力完全丧失。冷冻对GAD影响较小,但长期冷冻仍会导致酶活力损失,冷冻8周酶活力损失36%。GABA最适富集条件为:以pH5.8,0.2 mol/L磷酸氢二钠-柠檬酸缓冲液作为反应溶液,南瓜与缓冲液比例为1:3,南瓜添加量25%,味精添加量1.5%,30 ℃反应18 h,反应液中GABA浓度可达7633.2 mg/L,转化率为93.3%,单位质量南瓜GABA富集量为30.5 mg/g,与未富集时相比提高了132倍。  相似文献   

8.
利用海藻酸钠固定化米糠制备γ-氨基丁酸的研究   总被引:1,自引:0,他引:1  
米糠是稻谷加工中的副产品,年产量很大但开发利用程度很低,其含有的谷氨酸脱磉酶(GAD)活力是植物中的佼佼者,该酶可以将谷氨酸转化为γ-氨基丁酸(GABA).本研究中将米糠固定化以达到固定化其中GAD的目的,得到最佳固定化条件:米糠6.0%、海藻酸钠溶液浓度2.5%、硬化时间1h、CaCl2溶液浓度10%,此时固定化米糠GAD酶活力回收率达到4894%.利用固定化米糠GAD制备的GABA制备液中GABA含量为3.06%,为植物法制备GABA提供又一种技术方法.  相似文献   

9.
以糙米为原料,采用浸泡发芽结合超声波逆境处理方式增加糙米中γ-氨基丁酸(γ-aminobutyric acid,GABA)含量。对发芽过程中谷氨酸(glutamic acid,GA)含量、谷氨酸脱羧酶(glutamic acid decarboxylase,GAD)活性及GABA含量进行分析,研究GA含量、GAD活性与GABA含量之间的关系。结果表明:随着发芽时间延长,GABA及GA含量持续明显增加,且GABA与GA含量有显著相关性(P<0.05)。随着发芽时间延长,GAD活性呈先增后降再增的趋势;在发芽0~48?h之间,对照组GAD活性(以GABA量计)均值为9.25?nmol/g,GABA含量增加到6?倍以上;在48~60?h之间,GABA增量不明显。与对照相比,超声波处理促进GA含量增加2?倍以上,并且快速提高GAD活性,在36?h时发芽糙米中GABA含量最高达41.85?mg/100?g。  相似文献   

10.
研究重组谷氨酸脱羧酶大肠杆菌合成γ-氨基丁酸(γ-aminobutyric acid,GABA)的适宜条件。检测温度、p H值、表面活性剂、金属离子、底物与菌体质量比以及反应体系体积对GABA转化效率的影响。结果表明:最优转化条件为:转化体系5 m L、底物L-谷氨酸钠浓度0.1 mol/L、重组大肠杆菌细胞6.4 mg(干质量)、Triton-100体积分数0.06%、Ca2+浓度0.6 mmol/L,转化温度45℃、反应体系p H 4.5。在该体系下反应7 h,GABA合成量达到26.1 g/L,GABA转化效率在1 h时达到最高,为13.8 g/(g h),较优化前提高1.5 倍。  相似文献   

11.
研究芳香族氨基酸(L-色氨酸、L-苯丙氨酸和L-酪氨酸)在氢型732树脂上的三组分吸附平衡过程。考察了初始pH和温度对吸附等温线的影响,并用扩展的Freundlich模型对三组分吸附平衡过程进行了拟合。结果表明,L-Tyr、L-Trp和L-Phe的平衡吸附量随pH的减小和温度的升高而降低;当pH=1.0(即料液中存在过多H+)时,则会显著降低氨基酸在树脂上的平衡吸附量;三组分吸附行为表明,L-Trp是该三组分吸附系统中的强吸附质,L-Phe次之,而L-Tyr最弱;扩展的Freundlich模型能够较好地描述3种氨基酸在氢型732树脂上的三组分吸附平衡过程,所得的三组分吸附平衡方程在α=0.001水平上高度显著,其平均相对误差在0.34%~2.80%之间。  相似文献   

12.
为提高γ-氨基丁酸(γ-aminobutyric acid,GABA)产量,以产GABA屎肠球菌(Enterococcus faecium)AB157与酿酒酵母(Saccharomyces cerevisiae)SC-125为研究对象,通过单因素实验和响应面法优化共发酵条件;同时分析最优条件下共发酵和单菌发酵体系谷氨酸脱羧酶(glutamate decarboxylase,GAD)的酶活力及通过添加无细胞上清液(cell-free supernatant,CFS)探究高产GABA机制。结果表明:当总接种量2%(V/V),发酵温度为35 ℃、屎肠球菌AB157和酿酒酵母SC-125的接种比例为5:1(V/V)、L-谷氨酸钠浓度为12 g/L、发酵96 h时,共发酵体系GABA产量最高,达6.55 g/L,较单菌发酵体系产量提高到1.78倍;GAD酶活力分析表明,共发酵可显著提高GAD酶活;添加屎肠球菌AB157或酿酒酵母SC-125的CFS可显著提升GABA产量。本研究为屎肠球菌和酿酒酵母共发酵提高GABA产量及高产GABA机制的探讨提供了一定的理论参考。  相似文献   

13.
孙擎  曾林  谭霄  张恕铭  孙向阳  汪杰  胡琼  张庆 《食品工业科技》2020,41(14):87-93,100
为拓宽产γ-氨基丁酸(γ-aminobutyric acid,GABA)微生物资源,以四川泡菜为分离源从中筛选高产GABA乳酸菌菌株,并对高产乳酸菌菌株进行生理生化、分子生物学鉴定,高产GABA发酵条件优化及其益生特性分析。结果表明:采用高效液相色谱对菌株产GABA能力分析发现菌株AB157的GABA产量最高为1.08 g/L。生理生化和16S rRNA鉴定菌株AB157为屎肠球菌(Enterococcus faecium)。通过单因素实验和响应面优化,确定屎肠球菌AB157的最佳培养条件为L-谷氨酸钠底物浓度5.2 g/L、发酵温度31 ℃、初始pH7、发酵时间70 h,在此条件下,屎肠球菌AB157的GABA产量达到1.60 g/L。屎肠球菌AB157的益生分析表明,其在pH2.0和3 g/L的胆盐环境中的存活率分别为39%和59%,胆固醇的脱除量为18.09 μg/mL,说明该菌株具有良好的耐酸和耐胆盐特性以及较强的降胆固醇能力,可作为潜在功能性乳酸菌资源进行后续研究开发。  相似文献   

14.
15.
采用人工接种乳酸菌的方法,对发酵鸡肉肠中γ-氨基丁酸(γ-amino butyric acid,GABA)进行富集。首先鸡肉肠中分别添加不同来源的乳酸菌,筛选GABA富集的最佳发酵菌种;然后研究外源添加物L-谷氨酸(L-Glu)、VB_6和CaCl_2对鸡肉肠中GABA含量的影响,并采用Box-Behnken试验设计优化添加量。结果表明,3种不同来源的乳酸菌发酵鸡肉肠,其中酸奶乳酸菌与泡菜乳酸菌产GABA的能力较弱,均低于10 mg/100 g,耐久肠球菌产GABA能力最强,GABA含量达到62.14 mg/100 g,显著高于其他两种菌(P0.05);Box-Behnken设计得到发酵鸡肉肠富集GABA的最优外源添加物添加量为L-Glu 7.75 mg/100 g、VB_6 6.73 mg/100 g、Ca Cl2 8.35 mg/100 g,在此条件下鸡肉肠中GABA含量为68.32 mg/100 g,是未添加外源物含量的1.10倍,比普通鸡肉肠约提高10倍。方差分析表明,所建的回归模型能够很好地预测鸡肉肠中GABA含量的变化。其中,3种外源添加物的添加量均极显著影响鸡肉肠中GABA含量(P0.01),L-Glu和VB_6添加量的交互作用以及L-Glu和CaCl_2添加量的交互作用均显著影响鸡肉肠GABA含量(P0.05)。  相似文献   

16.
γ-氨基丁酸(GABA)是一种功能性成分,在食品中有着广阔的利用前景。该实验以豇豆为原料,研究了发芽温度和时间对豇豆发芽率和GABA含量的影响,同时分析了不同浸泡液对萌芽豇豆中GABA含量的影响。结果表明:在20~30℃下萌发24h,豇豆发芽率高且出芽整齐。在30℃下,萌发24h的豇豆GABA含量高达815.21μg/g,较萌发前高158.32μg/g。在浸泡液pH为4时,萌芽豇豆GABA含量可达2330.90μg/g,为萌发前豇豆GABA含量的4倍左右。Ca2+浓度在0.1mmol/L时,GABA含量可高达886.24μg/g,继续增加Ca2+浓度,则GABA含量降低。磷酸吡哆醛(PLP)浸泡液浓度在4mmol/L时,萌芽豇豆GABA的含量可达843.14μg/g,较萌发前提高了20%左右。VB6浸泡液在1mmol/L时,萌芽豇豆GABA含量为966.61μg/g,是萌芽前豇豆GABA含量的1.5倍左右。NaCl和L-谷氨酸浸泡液不能起到促进萌发豇豆富集GABA的作用。可见通过控制发芽时间和温度以及选择合适的浸泡液培养,能有效调节豇豆富集GABA。  相似文献   

17.
Enterococcus was selected by US EPA as a Gram-positive indicator microorganism for groundwater fecal contamination. It was recently reported that enterococcal surface protein (esp) was more prevalent in Enterococcus from human sources than in Enterococcus from nonhuman sources and esp could potentially be used as a source tracking tool for fecal contamination (Scott et al., 2005). In this research, we performed laboratory column transport experiments to investigate the transport of Enterococcus faecium within saturated quartz sands. Particularly, we used a wild type strain (E1162) and a mutant (E1162Δesp) to examine the influence of esp on the transport behavior of E. faecium. Our results showed that esp could significantly enhance the attachment of E. faecium cells onto the surface of silica sands and thus lower the mobility of E. faecium within sand packs. Cell surface properties (e.g., zeta potential) were determined and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory was applied to explain the effects of esp on the retention of E. faecium. Overall, our results suggested that E. faecium strains with esp could display lower mobility within saturated sand packs than E. faecium strains without esp. The disparity in the transport behavior of E. faecium with and without esp could limit the effectiveness of esp as a source tracking tool within the groundwater system.  相似文献   

18.
粪肠球菌和屎肠球菌是发酵香肠中常检出的2种主要的产酪胺和苯乙胺微生物。将粪肠球菌和屎肠球菌按照不同比例进行混合接种培养,发现在48h连续培养过程中,当粪肠球菌和屎肠球菌以1∶9比例混和接种培养时,体系pH值、细菌数量和酪胺生成量均显著低于其他各处理组;粪肠球菌有很强的产苯乙胺能力而屎肠球菌产苯乙胺能力较弱,当两者混合接种培养时,各混合体系的产苯乙胺水平相当,屎肠球菌产苯乙胺能力不受影响,而粪肠球菌产苯乙胺能力显著降低。  相似文献   

19.
Two strains, Enterococcus faecium RZS C5 and E. faecium DPC 1146, produce listericidal bacteriocins, so-called enterocins. E. faecium RZS C5 was studied during batch fermentation in both a complex medium (MRS) and in milk to understand the influence of environmental factors, characteristic for milk and cheese, on both growth and bacteriocin production. Fermentation conditions were chosen in view of the applicability of in situ enterocin production during Cheddar cheese production. Enterocin production by E. faecium RZS C5 in MRS started in the early logarithmic growth phase, and enterocin activity decreased during the stationary phase. The effect of pH on enterocin production and decrease of activity was as intense as the effect on bacterial growth. Higher enterocin production took place at pH 5.5 compared with pH 6.5. The use of lactose instead of glucose increased the production of enterocin, and at higher lactose concentration, production increased more and loss of activity decreased. The production in skimmed milk compared to MRS was lower and was detected mainly in the stationary phase. When casein hydrolysate was added to the milk, enterocin production was higher and started earlier, indicating the importance of an additional nitrogen source for growth of E. faecium in milk. For co-cultures of E. faecium RZS C5 with the starters used during Cheddar cheese manufacture, no enterocin activity was detected during the milk fermentation. Furthermore, the applicability of E. faecium RZS C5 and E. faecium DPC 1146 strains was tested in Cheddar cheese manufacture on pilot scale. Enterocin production took place from the beginning of the cheese manufacturing and was stable during the whole ripening phase of the cheese. This indicates that both an early and late contamination of the milk or cheese can be combated with a stable, in situ enterocin production. The use of such a co-culture is an additional safety provision beyond good manufacturing practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号