首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 174 毫秒
1.
设计了一种应用于12 bit 250 MS/s采样频率的流水线模数转换器(ADC)的运算放大器电路.该电路采用全差分两级结构以达到足够的增益和信号摆幅;采用一种改进的频率米勒补偿方法实现次极点的“外推”,减小了第二级支路所需的电流,并达到了更大的单位增益带宽.该电路运用于一种12 bit 250 MS/s流水线ADC的各级余量增益放大器(MDAC),并采用0.18 μm 1P5M 1.8 V CMOS工艺实现.测试结果表明,该ADC电路在全速采样条件下对于20 MHz的输入信号得到的信噪比(SNR)为69.92 dB,无杂散动态范围(SFDR)为81.17 dB,整个ADC电路的功耗为320 mW.  相似文献   

2.
设计了一个可降低12 bit 40 MHz采样率流水线ADC功耗的采样保持电路。通过对运放的分时复用,使得一个电路模块既实现了采样保持功能,又实现了MDAC功能,达到了降低整个ADC功耗的目的。通过对传统栅压自举开关改进,减少了电路的非线性失真。通过优化辅助运放的带宽,使得高增益运放能够快速稳定。本设计在TSMC0.35μm mix signal 3.3 V工艺下实现,在40 MHz采样频率,输入信号为奈奎斯特频率时,其动态范围(SFDR)为85 dB,信噪比(SNDR)为72 dB,有效位数(ENOB)为11.6 bit,整个电路消耗的动态功耗为14 mW。  相似文献   

3.
介绍了采用0.18μm数字工艺制造、工作在3.3V下、10位100MS/s转换速率的流水线模数转换器。提出了一种适用于1.5位MDAC的新的金属电容结构,并且使用了高带宽低功耗运算放大器、对称自举开关和体切换的PMOS开关来提高电路性能。芯片已经通过流片验证,版图面积为1.35mm×0.99mm,功耗为175mW。14.7MS/s转换速率下测得的DNL和INL分别为0.2LSB和0.45LSB,100MS/s转换速率下测得的DNL和INL分别为1LSB和2.7LSB,SINAD为49.4dB,SFDR为66.8dB。  相似文献   

4.
在流水线模数转换器(Pipeline ADC)电路中,栅压自举开关中的非线性电容会对开关管的导通电阻产生直接的影响,导致采样非线性。设计了一种三路径的高线性度栅压自举开关,采用三个自举电容,分别构成两条主路径和一条辅助路径,使得输入信号在通过两条主路径传输到开关管栅端时加快栅端电压的建立,同时利用辅助路径驱动非线性电容,减少电路中非线性电容对采样电路线性度的影响,从而增强信号驱动能力,提高整体电路的精度。本文设计的栅压自举开关应用于14 bit 500 MHz流水线ADC的采样保持电路中。采用TSMC 28 nm CMOS工艺进行电路设计。仿真结果表明,在输入频率为249 MHz,采样频率为500 MHz的条件下,该栅压自举开关的信噪比(SNDR)达到92.85 dB,无杂散动态范围(SFDR)达到110.98 dB。  相似文献   

5.
CMOS图像传感器中列并行模数转换器(ADC)的面积受到严格限制,ADC采样保持电路中的栅压自举开关也必须满足每列的面积要求。在传统单电容型栅压自举开关的基础上,利用源极跟随器在降低开关导通电阻的同时提高了电路的可靠性;通过体效应补偿电路降低输入变化对导通电阻的影响;同时,在列共用偏置电路上增加控制开关,减少不必要的功耗。提出的电路使用UMC 0.11μm CMOS工艺实现,电源电压为3.3 V,仿真结果表明开关导通电阻降低了约28.6%,输入范围内电阻变化率小于1.2%,有效位数提高了1 bit,而面积只增加了15%。流片后测试结果显示,以20 MS/s的采样频率对1.97 MHz的输入进行采样,测得信噪比(SNR)、无杂散动态范围(SFDR)和有效位数(ENOB)分别为85.8 dB、71.1 dB和11.5 bit。  相似文献   

6.
介绍了一种12 bit 80 MS/s流水线ADC的设计,用于基带信号处理,其中第一级采用了2.5 bit级电路,采样保持级采用了自举开关提高线性,后级电路采用了缩减技术,节省了芯片面积.采用了折叠增益自举运放,优化了运放的建立速度,节省了功耗.芯片采用HJTC0.18μm标准CMOS工艺,1.8 V电压供电,版图面积2.3 mm × 1.4 mm.版图后仿真表明,ADC在8 MHz正弦信号1 V峰值输入下,可以达到11.10 bit有效精度,SFDR达到80.16 dB,整个芯片的功耗为155 mW.  相似文献   

7.
设计了一个10 bit,40 MS/s流水线模数转换器,适用于无线传感器网络(WSN)嵌入式芯片中.基于对电容失配的非线性影响的分析,提出了每级多比特的结构,使ADC具有很好的线性度.片内集成了参考电压源,大大减少了外围电路的数量.芯片采用SMIC 0.18μm CMOS工艺实现,在40 MS/s采样率下,电路微分非线性(DNL)最大0.42 LSB,积分非线性(INL)最大0.93 LSB,有效精度(ENOB)最高达9 bit.电路使用1.8 V电压供电,核心面积1.5mm2,核心电路功耗73 mW.  相似文献   

8.
为了提高模数转换器的采样频率并降低其功耗,提出一种10 bit双通道流水线逐次逼近型(SAR)模数转换器(ADC)。提出的ADC包括两个高速通道,每个通道都采用流水线SAR结构以便低功率和减小面积。考虑到芯片面积、运行速度以及电路复杂性,提出的处于第二阶段的SAR ADC由1 bit FLASH ADC和6 bit SAR ADC组成。提出的ADC由45 nm CMOS工艺制作而成,面积为0.16 mm2。ADC的微分非线性和积分非线性分别小于0.36 最低有效位(LSB)和0.67 LSB。当电源为1.1 V时,ADC的最大运行频率为260 MS/s。运行频率为230 MS/s和260 MS/s的ADC的功率消耗分别为13.9 mW和17.8 mW。  相似文献   

9.
雷郎成  尹湘坤  苏晨 《微电子学》2012,42(3):301-305
实现了一种14位40MS/s CMOS流水线A/D转换器(ADC)。在1.8V电源电压下,该ADC功耗仅为100mW。基于无采样/保持放大器前端电路和双转换MDAC技术,实现了低功耗设计,其中,无采样/保持放大器前端电路能降低约50%的功耗,双转换MDAC能降低约10%的功耗。该ADC采用0.18μm CMOS工艺制作,芯片尺寸为2.5mm×1.1mm。在40MS/s采样速率、10MHz模拟输入信号下进行测试,电源电压为1.8V,DNL在±0.8LSB以内,INL在±3.5LSB以内,SNR为73.5dB,SINAD为73.3dB,SFDR为89.5dBc,ENOB为11.9位,THD为-90.9dBc。该ADC能够有效降低SOC系统、无线通信系统及数字化雷达的功耗。  相似文献   

10.
介绍了一种12 bit 60 MS/s流水线模数转换器(ADC),该转换器使用采样保持电路,将连续变化的模拟信号通过一定时间间隔的采样,以实现信号的准确量化,利用增益自举运放提高信号建立的线性度;采用每级1.5 bit精确度的流水线结构实现冗余编码,降低比较器失调电压对精确度的影响,同时提出一种新型的消除静态功耗的预放大比较器结构。该流水线ADC芯片采用华力55 nm 互补金属氧化物(CMOS)工艺进行电路和版图设计。对后仿真结果进行快速傅里叶变换(FFT)分析得到:动态参数无杂散动态范围(SFDR)为86.18 dB,信噪比(SNR)为72.91 dB,信纳比(SNDR)为72.8 dB,有效位数(ENOB)为11.72 bit。  相似文献   

11.
设计了一种10 bit 40 MS/s流水线模数转换器.通过采用自举开关和增益提升的套筒式共源共栅运放,保证了采样保持电路和级电路的性能.该模数转换器采用TSMC 0.35 p.m CMOS3.3 V工艺流片验证,芯片核心面积为5.6 jmm2.测试结果表明,该模数转换器在采样率为40 MHz输入频率为280 kHz时,获得54.5 dB的信噪比和60.2 dB的动态范围;在采样率为46 MHz输入频率为12.6 MHz时,获得52.1 dB的信噪比和60.6 dB的动态范围.  相似文献   

12.
郑晓燕  仇玉林   《电子器件》2007,30(5):1819-1821
实现了0.18μmCMOS模拟工艺、1.8V电源电压下10位分辨率、80MHz采样率的流水线ADC的电路级设计,采用栅压自举的采样开关和增益提升运放保证ADC的精度;采用复位结构的SHC和MDAC消除运放失调电压的影响;采用动态比较器并优化每级电容以降低功耗.当输入信号幅度为1Vpp时,ADC在整个量化范围内无失码,当输入信号频率为39MHz时,可获得71.6dB的无失真动态范围和60.56dB的信噪失真比.  相似文献   

13.
本文给出了一个基于0.18um CMOS工艺的12bit 100MS/s的流水线ADC。其中第一级采用了3.5比特结构以降低对电容匹配的要求,采样保持放大器、第一级和第二级均采用了自举开关以改善ADC线性度,后级采用级缩减技术节省了功耗和面积。当输入信号频率为15.5MHz、采样率为100MHz时,该ADC达到了79.8dB的SFDR和10.5bit的有效位数。芯片采用1.8V电压供电,包含输出驱动的总功耗为112mW, 芯片面积为3.51mm2 。  相似文献   

14.
设计了一种14位100 MS/s的流水线模数转换器(ADC)。采样保持电路与第1级2.5位乘法数模转换器(MDAC1)共享运放,降低了功耗。提出了一种改进的跨导可变双输入开关运放,以满足采样保持和MDAC1对运放的不同要求,并消除记忆效应和级间串扰。ADC后级采用5级1.5位运放共享结构。基于0.18 μm CMOS工艺,ADC核心面积为1.4 mm2。后仿真结果表明,在1.8 V电源电压下,当采样速率为100 MS/s、输入信号频率为46 MHz时,ADC的信噪比(SNR)为82.6 dB,信噪失真比(SNDR)为78.7 dB,无杂散动态范围(SFDR)为84.1 dB,总谐波失真(THD)为-81.0 dB,有效位数(ENOB)达12.78位。ADC整体功耗为116 mW。  相似文献   

15.
介绍了一个应用于数字电视地面多媒体广播(DTMB)接收机的10-bit,40-MS/s流水线模数转换器(ADC),通过优化各级电容大小和运算放大器电流大小,在保证电路性能的同时降低了功耗.测试结果为:在40MHz采样率,4.9MHz输入信号下,可以获得9.14bit的有效位数(ENOB),72.3dB无杂散动态范围(SFDR).电路微分非线性(DNL)的最大值为0.38LSB,积分非线性(INL)的最大值为0.51LSB.电路采用0.18μm 1P6M CMOS工艺实现,电源电压为3.3V,核心面积为1mm2,功耗为78mW.  相似文献   

16.
张辉柱  甘泽标  曹超  周莉 《微电子学》2022,52(2):276-282
设计了一种12位、采样率为20 MS/s的逐次逼近型模数转换器(SAR ADC)。整体电路为全差分结构,采用了一种基于VCM开关切换的分段式电容阵列。同时,比较器结合了前置运放和动态锁存器,与异步时序相配合,实现了SAR ADC高速工作。此外,采样电路采用栅压自举技术,提高采样的线性度。芯片基于TSMC 180 nm 1P5M CMOS工艺设计。仿真结果表明,当采样率为20 MS/s时,SAR ADC有效位数为11.94 bit,无杂散动态范围为86.53 dBc,信噪比为73.66 dB。  相似文献   

17.
介绍了一个应用于数字电视地面多媒体广播(DTMB)接收机的10-bit,40-MS/s流水线模数转换器(ADC),通过优化各级电容大小和运算放大器电流大小,在保证电路性能的同时降低了功耗.测试结果为:在40MHz采样率,4.9MHz输入信号下,可以获得9.14bit的有效位数(ENOB),72.3dB无杂散动态范围(SFDR).电路微分非线性(DNL)的最大值为0.38LSB,积分非线性(INL)的最大值为0.51LSB.电路采用0.18μm 1P6M CMOS工艺实现,电源电压为3.3V,核心面积为1mm2,功耗为78mW.  相似文献   

18.
设计了一款12 bit高稳定性控制类数模转换器(DAC),该DAC集成了带有稳定启动电路的新型低失调带隙基准源(BGR),改善了基准电路的稳定性以及对温度和工艺的敏感性;DAC采用了改进的两级电阻串结构,通过开关电阻匹配和特殊版图布局,在既不增加电路功耗又不扩大版图面积的前提下,提高了DAC的精度并降低了工艺浓度梯度对整体性能的影响.基于CSMC 0.5 μm 5 V 1P4M工艺对所设计的DAC芯片进行了流片验证.测试结果表明:常温下DAC的微分非线性(DNL)小于0.45 LSB,积分非线性(INL)小于1.5 LSB,并且在-55~125℃内DNL小于1 LSB,INL小于2.5 LSB;5V电源电压供电时功耗仅为3.5 mW,实现了高精度、高稳定性的设计目标.  相似文献   

19.
介绍了一个采用多种电路设计技术来实现高线性13位流水线A/D转换器.这些设计技术包括采用无源电容误差平均来校准电容失配误差、增益增强(gain-boosting)运放来降低有限增益误差和增益非线性,自举(bootstrapping)开关来减小开关导通电阻的非线性以及抗干扰设计来减弱来自数字供电的噪声.电路采用0.18μm CMOS工艺实现,包括焊盘在内的面积为3.2mm2.在2.5MHz采样时钟和2.4MHz输入信号下测试,得到的微分非线性为-0.18/0.15LSB,积分非线性为-0.35/0.5LSB,信号与噪声加失真比(SNDR)为75.7dB,无杂散动态范围(SFDR)为90.5dBc;在5MHz采样时钟和2.4MHz输入信号下测试,得到的SNDR和SFDR分别为73.7dB和83.9dBc.所有测试均在2.7V电源下进行,对应于采样率为2.5MS/s和5Ms/s的功耗(包括焊盘驱动电路)分别为21mW和34mW.  相似文献   

20.
李彬  周梦嵘  谢亮  金湘亮 《微电子学》2016,46(5):590-594
设计了一种12位4 MS/s的异步逐次逼近型模数转换器(SAR ADC)。采用一种既能节省开关动态功耗又能减小电容面积的开关切换策略,与传统结构相比,开关动态切换功耗节省了95%,电容总面积减小了75%。为了避免使用高频时钟,采用了异步控制逻辑,采样开关采用栅压自举开关以便提高ADC的线性度,动态锁存比较器的使用减小了静态功耗,片上集成了电压参考电路和相关驱动电路。基于SMIC 0.18 μm CMOS工艺,在1.8 V电源电压和4 MS/s转换速率条件下,经后仿真得到ADC的信号噪声失真比SNDR为70.2 dB,功耗仅为0.9 mW,品质因素FOM为109 fJ/conversion-step。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号