首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
Ge/Si吸收区-电荷区-倍增区分离(SACM)结构的APD作为一种新型光电探测器已成为硅基APD器件研究的重点.对SACM Ge/Si型APD器件的基本结构及其主要特性参数,包括量子效率、响应度、暗电流等进行了理论分析及仿真验证.实验结果表明:在给定的器件参数条件下,所设计的APD器件的雪崩击穿电压为25.7 V,最大内部量子效率为91%,单位增益下响应度峰值为0.55 A/W,在750~1 500 nm范围内具有较高响应度,其峰值波长为1 050 nm;在高偏压以及高光照强度情况下,倍增区发生空间电荷效应从而导致增益降低.  相似文献   

2.
应用ATLAS模拟软件,设计了吸收层和倍增层分离的(SAM)4H-SiC 雪崩光电探测器(APD)结构。分析了不同外延层厚度和掺杂浓度对器件光谱响应的影响,对倍增层参数进行优化模拟,得出倍增层的最优化厚度为0.26μm,掺杂浓度为9.0×1017cm-3。模拟分析了APD的反向IV特性、光增益、不同偏压下的光谱响应和探测率等,结果显示该APD在较低的击穿电压66.4V下可获得较高的倍增因子105;在0V偏压下峰值响应波长(250nm)处的响应度为0.11A/W,相应的量子效率为58%;临近击穿电压时,紫外可见比仍可达1.5×103;其归一化探测率最大可达1.5×1016cmHz 1/2 W-1。结果显示该APD具有较好的紫外探测性能。  相似文献   

3.
设计了一种基于0.18 μm CMOS工艺的高响应度雪崩光电二极管(APD)。该APD采用标准0.18μm CMOS工艺,设计了两个P+/N阱型pn节,形成两个雪崩区以产生雪崩倍增电流。雪崩区两侧使用STI(浅沟道隔离)结构形成保护环,有效地抑制了APD的边缘击穿;并且新增加一个深N阱结构,使载流子在扩散到衬底之前被大量吸收,屏蔽了衬底吸收载流子产生的噪声,用以提高器件的响应度。通过理论分析,确定本文所设计的CMOS-APD器件光窗口面积为10 μm×10 μm,并得到了器件其他的结构和工艺参数。仿真结果表明:APD工作在480 nm波长的光照时,量子效率达到最高90%以上。在加反向偏压-15 V时,雪崩增益为72,此时响应度可达到2.96 A/W,3 dB带宽为4.8 GHz。  相似文献   

4.
采用LPE生长的中波碲镉汞材料,通过B离子注入n-on-p平面结技术制备了规模为256×256,像元中心距为30 μm的碲镉汞APD焦平面探测器芯片。在液氮温度下对其增益、暗电流以及过噪因子等性能参数进行了测试分析,结果表明,所制备的碲镉汞APD焦平面芯片在-8.5 V反偏下平均增益达到166.8,增益非均匀性为3.33%;在0~-8.5 V反向偏置下,APD器件增益归一化暗电流为9.0×10-14~ 1.6×10-13 A,过噪因子F介于1.0~1.5之间。此外,还对碲镉汞APD焦平面进行了成像演示,并获得了较好的成像效果。  相似文献   

5.
王巍  杜超雨  王婷  鲍孝圆  陈丽  王冠宇  王振  黄义 《半导体光电》2015,36(6):888-891,908
提出了一种基于0.35μm CMOS工艺的、具有p+/n阱二极管结构的雪崩光电二极管(APD),器件引入了p阱保护环结构.采用silvaco软件对CMOS-APD器件的关键性能指标进行了仿真分析.仿真结果表明:p阱保护环的应用,明显降低了击穿电压下pn结边缘电场强度,避免了器件的提前击穿.CMOS APD器件的击穿电压为9.2V,工作电压下响应率为0.65 A/W,最大内部量子效率达到90%以上,响应速度能够达到6.3 GHz,在400~900 nm波长范围内,能够得到很大的响应度.  相似文献   

6.
采用标准CMOS工艺制备的n~+-p-π-p~+结构的线性APD,其倍增区p层的掺杂分布极大地影响着器件的性能.采用Silvaco仿真软件对倍增区p层进行了设计仿真,研究了p层的注入剂量和注入峰值浓度深度对器件特性的影响.仿真结果表明,设定器件增益为50,在p层的最佳注入剂量为1.82×10~(12)/cm~2,峰值浓度深度为2.1μm左右的最佳工艺条件下,器件的工作电压为73.1 V,过剩噪声因子为4.59,过剩噪声指数在0.34~0.45之间(波长λ=800 nm),优于目前已报道的结果.通过工艺的优化,器件的性能可以得到进一步提高.  相似文献   

7.
面向高速光通信系统的应用,提出了一种全速率线性25Gb/s时钟数据恢复电路(Clock and Data Recovery Circuit,CDRC)。CDRC采用了混频器型线性鉴相器和自动锁频技术来实现全速率时钟提取和数据恢复。在设计中没有使用外部参考时钟。基于45nm CMOS工艺,该CDR电路从版图后仿真结果得到:恢复25Gb/s数据眼图的差分电压峰峰值Vpp和抖动峰峰值分别为1.3V和2.93ps;输出25GHz时钟的差分电压峰峰值Vpp和抖动峰峰值分别为1V和2.51ps,相位噪声为-93.6dBc/Hz@1MHz。该芯片面积为1.18×1.07mm2,在1V的电源电压下功耗为51.36mW。  相似文献   

8.
一种高带宽NP 型CMOS APD 的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种高带宽的硅基CMOS雪崩光电二极管(APD)器件。该器件在N阱/P衬底基本结构的基础上,增加一个N型深掩埋层,并在该掩埋层单独加上电压,以减小载流子的输运时间。通过理论分析确定了器件的结构参数,通过器件性能的仿真分析对相关参数进行了优化设计。仿真结果表明:采用标准0.18 m CMOS工艺,所设计的APD器件的窗口尺寸大小为20 m20 m,在反向偏压为16.3 V时,器件的雪崩增益为20,响应度为0.47 A/W,3 dB带宽为8.6 GHz。  相似文献   

9.
基于标准CMOS工艺的n+源/漏区和p-sub,设计 了一种楔形n+pn+ 结构的硅基发光二极管(Si-LED)阵列,并经UMC 0.18μm 1P6M CMO S工艺制备。 测试结果表明, 设计的Si-LED 在 0.9~1.5V范围内正常工作,与CMOS电路的电源电压兼容,其发光 峰值波长在1100nm附近;注 入电流为390mA时,器件的发光功率可达1800nW,平均功率转换效率为3.5×10-6 。由于工作电压低、发光功率高,设计的LED器件有望在光互连领域得到广泛应用。  相似文献   

10.
吸收层与倍增层分离的4H-SiC雪崩光电探测器   总被引:2,自引:0,他引:2  
设计和制备了吸收层和倍增层分开的4H-SiC穿通型雪崩紫外光电探测器.设计器件的倍增层和吸收层厚度分别为0.25和1μm.采用multiple junction termination extension(MJTE)方法减少器件的电流集边效应和器件表面电场.对器件的暗电流、光电流和光谱响应进行了测量.器件在55V的低击穿电压下获得了一个高的增益(>104);穿通前器件暗电流约为10pA数量级;0V偏压下器件光谱响应的紫外可见比大于103.光谱响应的峰值波长随反向偏压的增大而向短波方向移动,在击穿电压附近光谱响应的峰值波长移到210nm,此波长远远小于在0V时的响应峰值.结果显示器件在紫外光探测中具有优良的性能.  相似文献   

11.
吸收层与倍增层分离的4H-SiC雪崩光电探测器   总被引:1,自引:0,他引:1  
设计和制备了吸收层和倍增层分开的4H-SiC穿通型雪崩紫外光电探测器.设计器件的倍增层和吸收层厚度分别为0.25和1μm.采用multiple junction termination extension(MJTE)方法减少器件的电流集边效应和器件表面电场.对器件的暗电流、光电流和光谱响应进行了测量.器件在55V的低击穿电压下获得了一个高的增益(>104);穿通前器件暗电流约为10pA数量级;0V偏压下器件光谱响应的紫外可见比大于103.光谱响应的峰值波长随反向偏压的增大而向短波方向移动,在击穿电压附近光谱响应的峰值波长移到210nm,此波长远远小于在0V时的响应峰值.结果显示器件在紫外光探测中具有优良的性能.  相似文献   

12.
采用分层吸收渐变电荷倍增(SAGCM)结构,通过两次扩散、多层介质淀积、AuZn p型欧姆接触、AuGeNi n型欧姆接触等工艺,设计制造了正面入射平面InP/InGaAs雪崩光电二极管,器件利用InGaAs做吸收层,InP做增益层,光敏面直径50 μm;测试结果表明器件有正常的光响应特性,击穿电压32~42 V,在低于击穿电压2 V左右可以得到大约10A/W的光响应度,在0到小于击穿电压1 V的偏压范围内,暗电流只有1 nA左右;器件在2.7 GHz以下有平坦的增益.  相似文献   

13.
利用液相外延技术研制出高增益InGaAsP/InP异质结光电晶体管(HPT)。入射光波长为1.256μm时,实现直流光增益为88.9,微分光增益为148,光谱响应范围为0.85~1.3μm。在外偏电压小于4V时暗电流小于10nA。  相似文献   

14.
硅基APD 的性能取决于其器件结构与工艺过程。文中对n+-p--p+外延结构的APD 器件的工艺和器件性能进行了仿真分析,为硅基APD 器件的设计提供了理论指导。利用Silvaco 软件对APD器件的关键工艺离子注入和扩散工艺进行了仿真, 确定工艺参数对杂质的掺杂深度和掺杂分布的影响。并且,对于APD 器件的性能进行了分析,对电场分布、增益、量子效率、响应度等参数进行了仿真分析。仿真结果表明:在给定的器件参数条件下,所设计的APD器件的增益为100时,响应度峰值为55A/W左右,在600~900 nm 范围内具有较高响应度,峰值波长在810 nm。  相似文献   

15.
采用标准的0.18μmCMOS工艺,设计了一种新型的应用于可见光通信系统的雪崩光电二极管(APD).相较于传统的CMOS APD,该器件在深n阱/p衬底的结构基础上增加一层p阱,再在其上分别离子注入一层n+/p+层作为器件的雪崩击穿层,并且采用STI结构来防止器件边缘过早击穿.仿真结果表明,器件的雪崩击穿电压为9.9 V,暗电流为1×10-12 A,3 dB带宽为5.9 GHz,响应度为1.2 A/W.由于STI保护环和短接深n阱/p衬底的结构设计,器件暗电流较传统结构CMOS APD降低了 2个量级,且带宽提高了约10%.  相似文献   

16.
设计并制备了一种面向25 Gbit/s长距离传输用背面进光高速InAlAs雪崩光电二极管(APD),芯片采用垂直台面吸收-渐变-电荷-倍增层分离(SAGCM)结构,通过刻蚀工艺形成三层台面,将电场限制在最大台面倍增层的中心,有效降低了台面边缘击穿风险。器件采用倒装焊结构,背面集成微透镜,以提高光耦合孔径。研制的APD芯片在增益M=1时,对1310 nm波长光的响应度为0.84 A/W;在M=10时,3 dB带宽达到19 GHz;增益带宽积为180 GHz;在5×10^(-5)误码率下最佳灵敏度为-22.3 dBm,可支持100GBASE-ER4通信标准。  相似文献   

17.
在蓝宝石(0001)衬底上采用低压金属有机物化学气相沉积(MOCVD)方法生长GaN外延层结构,以此为材料制作了GaN基肖特基结构紫外探测器.测量了该紫外探测器的暗电流曲线、C-V特性曲线、光响应曲线和响应时间曲线.该紫外探测器在5V偏压时暗电流为0.42nA,在10V偏压时暗电流为38.5nA.在零偏压下,该紫外探测器在250nm~365nm的波长范围内有较高的响应度,峰值响应度在363nm波长处达到0.12A/W,在365nm波长左右有陡峭的截止边;当波长超过紫外探测器的截止波长(365nm左右),探测器的响应度减小了三个数量级以上.该紫外探测器的响应时间小于2μs.  相似文献   

18.
高性能42nm栅长CMOS器件   总被引:1,自引:1,他引:0  
研究了20~50nm CMOS器件结构及其关键工艺技术,采用这些创新性的工艺技术研制成功了高性能42nm栅长CMOS器件和48nm栅长的CMOS环形振荡器.在电源电压VDD为±1.5V下,NMOS和PMOS的饱和驱动电流Ion分别为745μA/μm和-530μA/μm,相应的关态漏电流Ioff分别为3.5nA/μm和-15nA/μm.NMOS的亚阈值斜率和DIBL分别为72mV/Dec和34mV/V,PMOS的亚阈值斜率和DIBL分别为82mV/Dec和57mV/V.栅长为48nm的CMOS 57级环形振荡器,在1.5V电源电压下每级延迟为19.9ps.  相似文献   

19.
GaN基肖特基结构紫外探测器   总被引:11,自引:5,他引:6  
在蓝宝石 (0 0 0 1)衬底上采用低压金属有机物化学气相沉积 (MOCVD)方法生长GaN外延层结构 ,以此为材料制作了GaN基肖特基结构紫外探测器 .测量了该紫外探测器的暗电流曲线、C V特性曲线、光响应曲线和响应时间曲线 .该紫外探测器在 5V偏压时暗电流为 0 4 2nA ,在 10V偏压时暗电流为 38 5nA .在零偏压下 ,该紫外探测器在2 5 0nm~ 36 5nm的波长范围内有较高的响应度 ,峰值响应度在 36 3nm波长处达到 0 12A/W ,在 36 5nm波长左右有陡峭的截止边 ;当波长超过紫外探测器的截止波长 (36 5nm左右 ) ,探测器的响应度减小了三个数量级以上 .该紫外探测器的响  相似文献   

20.
研制了一种基于可调F-P滤波器的线性波长扫描窄线宽光纤激光器。该激光器采用环形腔结构, 以高增益掺Er3+光纤(Er30-4/125)作为增益介质, 以保偏掺Er3+光纤(EDF08-PM)作为可饱和吸收体抑制跳模, 同时结合F-P滤波器选频, 获得了单频窄线宽的激光输出。通过线性调节F-P滤波器的驱动电压, 实现了对激光器波长的线性扫描。在两只975nm单模激光器的双向泵浦下, 实验中测得激光器阈值为15mW, 最大输出功率为24.3mW, 3dB线宽约为5.2kHz。当F-P滤波器在6.1~10.2V的线性电压驱动下, 激光器波长的线性扫描范围为1542.404~1558.836nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号