首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研究粘土/丁苯橡胶(SBR)纳米复合材料的结构和性能及其在全钢载重子午线轮胎气密层中的应用。结果表明:粘土在复合材料中分散均匀,复合材料气密性能优异;气密层采用粘土/SBR纳米复合材料的全钢载重子午线轮胎成品性能符合企业标准要求,实际使用状况良好。  相似文献   

2.
采用溴化丁基橡胶(BIIR)与粘土/SBR复合胶制备粘土/SBR/BIIR复合材料,并对其结构与性能进行研究.结果表明:粘土/SBR/BIIR并用胶为以BIIR为连续相、以SBR为分散相的海岛结构,并且粘土基本分散于SBR分散相中,所制备的复合材料为隔离型纳米复合材料;BIIR与SBR的相容性不好,热力学上基本不相容;...  相似文献   

3.
邱立武  牛西冉  朱逸飞  刘荣亮  姜涛 《轮胎工业》2022,42(11):0666-0670
研究树脂硫化体系在溴化丁基橡胶(BIIR)/再生丁基橡胶(RIIR)/天然橡胶(NR)并用气密层胶中的应用。结果表明:气密层胶配方以BIIR为主体,并用50份以上的RIIR和少量的NR时,与传统硫化体系相比,树脂硫化体系可达到较好的共硫化效果,气密层胶硫化平坦性、充模流动性和物理性能优异,耐高温降解能力强;在适当减小增粘树脂用量的情况下,使用树脂硫化体系生产的胎坯内衬层部件的成型接头仍可获得良好的粘性;成品轮胎气密层气密性良好。  相似文献   

4.
刘欣然  朱然 《轮胎工业》2013,33(4):198-201
介绍溴化异丁烯与对甲基苯乙烯共聚物(BIMSM弹性体)在轮胎气密层、胎面和胎侧中的应用情况。与氯化丁基橡胶和溴化丁基橡胶相比,采用BIMSM弹性体的气密层气密性能更好,且耐热性能和耐屈挠性能显著改善;添加纳米填料的BIMSM纳米复合材料可以进一步提高气密层气密性能;采用BIMSM弹性体/尼龙动态硫化合金可以在气密层厚度减小80%的情况下大幅提高气密性能。胎面胶采用BIMSM弹性体可以提高轮胎的牵引性能和耐磨性能。非污染性黑胎侧胶采用BIMSM弹性体可以改善胶料的综合物理性能。  相似文献   

5.
研究与60份炭黑N660相比,15份废旧轮胎裂解炭黑(CBp)/45份炭黑N660并用对轮胎溴化丁基橡胶(BIIR)气密层胶性能的影响。结果表明:与炭黑N660相比,CBp的灰分含量和筛余物含量大,DBP吸收值略小;与60份炭黑N660填充的BIIR胶料相比,15份CBp/45份炭黑N660并用填充的BIIR胶料的硫化特性变化不大,拉断伸长率减小,300%定伸应力和拉伸强度增大,耐热空气老化性能无明显变化,气密性相当,即采用15份CBp替代15份炭黑N660的BIIR气密层胶在保证使用性能的前提下,有效降低了生产成本。  相似文献   

6.
研究预改性片层粘土(100份丁苯橡胶纳米复合80份粘土)在溴化丁基橡胶(BIIR)中的应用。结果表明:预改性片层粘土在BIIR中能够实现均匀的纳米分散,粘土片层与橡胶分子链的作用力增强;与未加预改性片层粘土的胶料相比,预改性片层粘土/BIIR复合材料的交联密度减小,正硫化时间缩短,拉伸强度、拉断伸长率和拉断永久变形增大,60℃时的损耗因子减小,气密性明显提高,其具有很高的性价比。  相似文献   

7.
研究国产溴化丁基橡胶(BIIR)2302在全钢载重子午线轮胎气密层胶[天然橡胶/BIIR并用胶(并用比为20/80)]中的应用。结果表明:与采用进口BIIR2222的气密层胶相比,采用BIIR2302的气密层胶硫化速度和加工安全性相当;气密性差异不大,拉断伸长率较大,其他物理性能相近;工艺性能较好;成品轮胎耐久性能略好。BIIR2302完全可以替代BIIR2222用于全钢载重子午线轮胎气密层胶中。  相似文献   

8.
金振涣  江伟  陈生  胡金龙 《轮胎工业》2020,40(5):0291-0294
研究溴化丁基橡胶(BIIR)EXXPRO在全钢子午线轮胎气密层胶中的应用。结果表明:在全BIIR或BIIR/天然 橡胶并用气密层胶中以EXXPRO1603等量替代BIIR2222,胶料的交联程度和加工安全性提高,硫化胶的物理性能变化不 大,高温条件下的气密性显著提高。  相似文献   

9.
袁亚东  黄义钢  高绪风  李勇 《轮胎工业》2016,36(11):658-660
研究国产溴化丁基橡胶(BIIR)在全钢载重子午线轮胎气密层胶中的应用。结果表明:与进口BIIR相比,国产BIIR的挥发物质量分数和灰分质量分数较小;与进口BIIR气密层胶相比,国产BIIR气密层胶的门尼焦烧时间、硫化特性、物理性能、耐屈挠性能和耐热老化性能相当,气密性略好,可以满足气密层胶的需求;国产BIIR性价比高,经济效益显著。  相似文献   

10.
将全钢载重子午线轮胎气密层胶主体材料由并用比为80/20的溴化丁基橡胶(BIIR)/天然橡胶(NR)并用体系改为全BIIR,研究气密层胶的性能变化。结果表明,与BIIR/NR气密层胶相比,BIIR气密层胶的气密性和耐热老化性能好,加工性能略差,但通过增加混炼段、降低排胶温度等措施,胶料的加工性能改善,压延半成品和成型接头质量提高。  相似文献   

11.
12.
13.
陈建文 《广东化工》2006,33(6):79-81
乙烯酮(双乙烯酮)是十分重要的化工中间体,其下游产品较多。江苏某化工厂开发生产乙烯酮(双乙烯酮)下游产品三十多个,年生产规模三万多吨,是国内以乙烯酮(双乙烯酮)为中间体生产精细化学品的综合骨干企业。针对乙烯酮(双乙烯酮)下游产品废水特点,该厂结合企业实际,开展了产品优化,结构调整,清洁生产,资源循环利用,节水降耗等工作,从源头削减了污染物的生产。同时投资二千多万元新建预处理装置三套,6000m3/d废水生化处理装置一套,使全厂乙烯酮(双乙烯酮)下游产品的废水得到了有效的治理。  相似文献   

14.
The miscibility of various amorphous polybutadienes with mixed microstructures of 1,4 addition units (cis, 1,4 and trans 1,4) and 1,2 addition units have been investigated. The studies here involved optical transparency, differential scanning calorimetry, and small angle light scattering. It was found that a 90 percent (cis) 1, 4 addition polybutadiene was immiscible with high (91 percent) 1,2 addition polybutadiene. Reduction of the 1,2 content to 71 percent induced an upper critical solution temperature (UCST) with the cis 1,4 polymer. Polybutadienes with 50 percent and 10 percent 1,2 contents were miscible above the crystalline melting temperature of the cis 1,4 polybutadiene. Immiscibility of the 91 percent 1,2 addition polymer was also found with a 10 percent 1,2 polybutadiene. The latter polymer also exhibits an UCST with the 71 percent 1,2 polymer. The results are used to interpret the characteristics of blends of polybutadienes of varying microstructure.  相似文献   

15.
阐述并比较了几种加压设备在乙炔加压清净过程中的性能和特点。  相似文献   

16.
唐蕾 《粉煤灰》2013,(5):5-6
以F类粉煤灰为例,详细介绍了测定粉煤灰中烧失量的步骤、计算数学模型、影响测量不确定度的因素以及各项测量不确定度分量评定,人员、设备、材料、方法、环境都是影响测量不确定的因素。  相似文献   

17.
以添加FeCl2的ZnCl2-KCl混合熔盐裂解纤维素和秸秆,制得生物油。采用傅立叶变换红外光谱法和气相色谱-质谱法分析生物油的成分。结果表明,生物油中成分复杂,含有氧元素、多种有机化合物,主要包括酮类、醛类、酚类及羧酸类等。测定了20~80℃生物油的密度和粘度,发现生物油的密度与温度呈较好线性关系,而生物油的粘度均大于水的粘度,且不同熔盐体系对秸秆生物油的粘度无较大影响。  相似文献   

18.
周云  温集强 《水泥》2007,(10):29-30
我厂3号回转窑(Φ4m×60m)生产线在1996年年底由SP窑(产量912t/d)改为NSP窑(产量1320t/d),预分解系统为四级旋风预热器带离线式分解炉  相似文献   

19.
Conclusions It is significant that the purification on a single passage of viscose through porous ceramic corresponds to the result of a two-stage filtration of it in industrial filter-presses with standard fillings.Kiev Combine. Kiev Technological Institute of Light Industry. Translated from Khimicheskie Volokna, No. 3, pp. 20–22, May–June, 1969.  相似文献   

20.
The objective of the study was to explore the effect of the degree of deacetylation (DD) of the chitosan used on the degradation rate and rate constant during ultrasonic degradation. Chitin was extracted from red shrimp process waste. Four different DD chitosans were prepared from chitin by alkali deacetylation. Those chitosans were degraded by ultrasonic radiation to different molecular weights. Changes of the molecular weight were determined by light scattering, and data of molecular weight changes were used to calculate the degradation rate and rate constant. The results were as follows: The molecular weight of chitosans decreased with an increasing ultrasonication time. The curves of the molecular weight versus the ultrasonication time were broken at 1‐h treatment. The degradation rate and rate constant of sonolysis decreased with an increasing ultrasonication time. This may be because the chances of being attacked by the cavitation energy increased with an increasing molecular weight species and may be because smaller molecular weight species have shorter relaxation times and, thus, can alleviate the sonication stress easier. However, the degradation rate and rate constant of sonolysis increased with an increasing DD of the chitosan used. This may be because the flexibilitier molecules of higher DD chitosans are more susceptible to the shear force of elongation flow generated by the cavitation field or due to the bond energy difference of acetamido and β‐1,4‐glucoside linkage or hydrogen bonds. Breakage of the β‐1,4‐glucoside linkage will result in lower molecular weight and an increasing reaction rate and rate constant. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3526–3531, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号