首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   395960篇
  免费   4101篇
  国内免费   940篇
电工技术   6790篇
综合类   189篇
化学工业   61524篇
金属工艺   21548篇
机械仪表   14197篇
建筑科学   7975篇
矿业工程   4218篇
能源动力   8141篇
轻工业   24274篇
水利工程   5344篇
石油天然气   14730篇
武器工业   30篇
无线电   37778篇
一般工业技术   89867篇
冶金工业   61416篇
原子能技术   13842篇
自动化技术   29138篇
  2021年   3683篇
  2019年   3748篇
  2018年   7069篇
  2017年   7335篇
  2016年   7729篇
  2015年   4379篇
  2014年   7546篇
  2013年   17065篇
  2012年   11169篇
  2011年   14470篇
  2010年   11621篇
  2009年   13189篇
  2008年   13274篇
  2007年   12923篇
  2006年   10738篇
  2005年   9664篇
  2004年   9382篇
  2003年   8827篇
  2002年   8421篇
  2001年   8205篇
  2000年   7870篇
  1999年   7505篇
  1998年   16336篇
  1997年   12245篇
  1996年   9251篇
  1995年   7476篇
  1994年   6697篇
  1993年   6809篇
  1992年   5486篇
  1991年   5520篇
  1990年   5533篇
  1989年   5392篇
  1988年   5237篇
  1987年   4988篇
  1986年   4852篇
  1985年   5305篇
  1984年   5079篇
  1983年   4771篇
  1982年   4507篇
  1981年   4652篇
  1980年   4520篇
  1979年   4673篇
  1978年   4852篇
  1977年   5155篇
  1976年   6145篇
  1975年   4380篇
  1974年   4415篇
  1973年   4512篇
  1972年   3972篇
  1971年   3648篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.

The presence of Mn(II) in water exceeding the permitted concentration limits declared by the World Health Organization (WHO) influences individuals, animals, and the ecosystem negatively. Therefore, there is a necessity for an efficient material to eliminate this potentially toxic element from wastewater. We herein focused on the adsorptive removal of Mn(II) ions from polluted aqueous media using natural Egyptian glauconite clay (G) and its nanocomposites with modified chitosan (CS). We applied modified chitosan with glutaraldehyde (GL), ethylenediaminetetraacetic acid (EDTA), sodium dodecyl sulfate (SDS), and cetyltrimethyl ammonium bromide (CTAB). The utilized nanocomposites were referred to as GL-CS/G, EDTA-GL-CS/G, SDS-CS/G, and CTAB-CS/G, respectively. The point of zero charge values of the materials were estimated. The adsorption properties of the G clay and its nanocomposites toward the removal of Mn(II) ions from polluted aqueous media as well as the adsorption mechanism were explored using a batch technique. The glauconite (G) and its nanocomposites: GL-CS/G, CTAB-CS/G, EDTA-GL-CS/G, and SDS-CS/G, exhibited maximum adsorption capacity values of 3.60, 24.0, 26.0, 27.0, and 27.9 mg g?1, respectively. The adsorption results fitted well the Langmuir isotherm and pseudo-second-order kinetic models. The estimated thermodynamic parameters: ΔH° (from 1.03 to 5.55 kJ/mol) and ΔG° (from ? 14.5 to ? 18.8 kJ/mol), indicated that Mn(II) ion adsorption process was endothermic, spontaneous, and physisorption controlled. Furthermore, the obtained adsorption results are encouraging and revealing a great potentiality for using the modified adsorbents as accessible adsorbents for Mn(II) ion removal from polluted aqueous solutions, depending on their reusability, high stability, and good adsorption capacities.

Graphic Abstract
  相似文献   
2.
Atomic Energy - The physical aspects and main results of reactor tests of a two-stage core consisting of fresh fuel assemblies and a significant number of fuel assemblies from the previous core,...  相似文献   
3.
Journal of Communications Technology and Electronics - An option of multicriteria collision risk ranking of aircraft by data from an onboard radar station (OBRS) is proposed. This method can be...  相似文献   
4.
5.
The G protein-coupled receptor GPR183/EBI2, which is activated by oxysterols, is a therapeutic target for inflammatory and metabolic diseases where both antagonists and agonists are of potential interest. Using the piperazine diamide core of the known GPR183 antagonist (E)-3-(4-bromophenyl)-1-(4-(4-methoxybenzoyl)piperazin-1-yl)prop-2-en-1-one (NIBR189) as starting point, we identified and sourced 79 structurally related compounds that were commercially available. In vitro screening of this compound collection using a Ca2+ mobilization assay resulted in the identification of 10 compounds with agonist properties. To enable establishment of initial structure-activity relationship trends, these were supplemented with five in-house compounds, two of which were also shown to be GPR183 agonists. Taken together, our findings suggest that the agonist activity of this compound series is dictated by the substitution pattern of one of the two distal phenyl rings, which functions as a molecular efficacy-switch.  相似文献   
6.
The effect of dry and wet ball milling of LiFe5O8 ferrite powder on the microstructure and electromagnetic properties of ferrite ceramics was studied using XRD analysis, scanning electron microscopy, dilatometry, thermogravimetry, calorimetry, and measurement of specific magnetization and electrical resistance. The sintering temperature was 1050 °C; the sintering time was 2 h. It was found that ferrite fabricated from dry-milled powder exhibits an ordered α-LiFe5O8 phase with bulk density of 91%. Its saturation magnetization and Curie temperature are 55 emu/g and 628°С, respectively. Specific electrical resistance is 4?106 Ω cm. Wet milling in isopropyl alcohol causes formation of a disordered β-LiFe5O8 phase. Ceramics produced by this method shows higher bulk density (97%) and low porosity, and an order of magnitude lower resistivity. Its saturation magnetization and Curie temperature are 51 emu/g and 607°С, respectively.  相似文献   
7.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
8.
Here, we have fabricated the spinel binary-metal oxide (FeCo2O4) via a solvent-free and cost-effective approach. The nanocomposites of the as-fabricated binary-metal spinel oxide have been prepared with three different conductive-matrices, namely r-GO, CNTs, and PANI, via ultra-sonication approach. The spinel phase and surface functionalities of the fabricated FeCo2O4 sample have been confirmed via XRD and FT-IR analyses, respectively. The morphological-structure and elemental composition of the fabricated samples have been probed via FESEM and EDX results. The role of added conductive-matrices in the improvement of the electrical conductivities of the fabricated nanocomposites has been investigated via I–V experiments. The electrochemical experiments, conducted in half-cell configuration, showed that FeCo2O4/PANI nanocomposite exhibited the highest specific capacitance (658.9 Fg-1) than that of the remaining two nanocomposites. Furthermore, FeCo2O4/PANI nanocomposite exhibited excellent cyclic stability as it lost just 8.3% of its initial specific capacitance even after 3000 cyclic tests. The superior capacitive-activity of the FeCo2O4/PANI nanocomposite is accredited to its high conductivity, large surface area, and synergy effects between the pseudocapacitance derived from the PANI and FeCo2O4 nanostructure. The electrochemical and electrical measurements suggested that FeCo2O4/PANI nanostructure is an emerging contender for energy storage applications.  相似文献   
9.
A detailed study of butyl rubber-based vibration damping formulations linking their composition, morphology, phase structure, viscosity, mechanical loss factor, and other characteristics is presented for the first time. High performance of the compositions including aromatic petroleum oil is explained by limited solubility of the plasticizer that leads to the formation of a highly-viscous emulsion (η20°C ≈ 1000 Pa·s) consisting of a swollen butyl rubber matrix and dispersed oil droplets in the broad composition range. Chalk is found to be the best inorganic filler as its spherical particles provide strong adhesion to the reinforcing layer of aluminum foil. Aiming to eliminate ecologically unfriendly aromatic compounds, a new low-cost binding agent formulation based on butyl rubber mixed with polyisobutylene and highly refined mineral oil is suggested. Being environmentally safe, it possesses high viscosity of 1000–3000 Pa·s, cohesion strength of 3.5–5.0 N/cm, penetration of 4.5–6.0 mm, and mechanical loss factor up to 0.34 at room temperature, which are as good as, or even better than, the properties of currently produced vibration damping materials containing aromatic compounds. New materials can be used in car and aircraft parts for effective vibration isolation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号