首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
实现了一个基于触发器结构用0.35μm CMOS工艺实现的1∶8分频器.它由3级1∶2 分频器单元组成,其中第一级为动态分频器,决定了整个芯片的性能,第二、三级为静态分频器,在低频下能稳定工作.分频器采用源极耦合逻辑电路,并在传统的电路结构上进行改进,提高了电路的性能.测试的结果表明,芯片工作速率超过8.5GHz,工作带宽大于2GHz.电路在3.3V电源电压下工作,每个1∶2分频器单元的功耗约为11mW,面积为35μm×50μm.该芯片可应用于高速射频或光电收发机系统中.  相似文献   

2.
采用IBM 0.13 μm CMOS工艺,在锁相环系统电源电压2.5 V的条件下,以三级分频器级联的方式实现了一款8~25 GHz 1∶8高速分频器电路。为了获得更高的工作速度和灵敏度,设计中对传统的伪差分结构锁存器进行了拓扑和版图优化,基本的二分频单元由锁存器和输出缓冲级电路构成,以保证版图布线后信号传输的衰减最低。后仿真结果表明:在电源电压2.5 V时,分频器的核心电路(第一级)功耗为21.75 mW,对应的版图尺寸为70 μm×35 μm;在输入信号峰峰值900 mV的条件下,分频范围达到8~25 GHz,并通过了所有工艺角和温度仿真。  相似文献   

3.
采用0.35μm CMOS工艺设计并实现了一种多模分频器.该多模分频器由一个除4或5的预分频器和一个除128~255多模分频器在同一芯片上连接而成;在电路设计中,分析了预分频器功耗和速度之间的折中关系,根据每级单元电路的输入频率不同对128~255多模分频器采用了功耗优化技术;对整个芯片的输入输出PAD进行了ESD保护设计;该分频器在单端信号输入情况下可以工作到2.4GHz,在差分信号输入下可以工作到2.6GHz以上;在3.3V电源电压下,双模预分频器的工作电流为11mA,多模分频器的工作电流为17mA;不包括PAD的芯片核心区域面积为0.65mm×0.3mm.该可编程多模分频器可以用于2.4GHz ISM频段锁相环式频率综合器.  相似文献   

4.
采用0.35μm CMOS工艺设计并实现了一种多模分频器.该多模分频器由一个除4或5的预分频器和一个除128~255多模分频器在同一芯片上连接而成;在电路设计中,分析了预分频器功耗和速度之间的折中关系,根据每级单元电路的输入频率不同对128~255多模分频器采用了功耗优化技术;对整个芯片的输入输出PAD进行了ESD保护设计;该分频器在单端信号输入情况下可以工作到2.4GHz,在差分信号输入下可以工作到2.6GHz以上;在3.3V电源电压下,双模预分频器的工作电流为11mA,多模分频器的工作电流为17mA;不包括PAD的芯片核心区域面积为0.65mm×0.3mm.该可编程多模分频器可以用于2.4GHz ISM频段锁相环式频率综合器.  相似文献   

5.
夏辉 《电子测试》2011,(1):83-86
在光纤传输系统中,分频器是工作在最高频率的电路之一,起着至关重要的作用,本文就采用了由锁存器构成的数字1:2分频器.采用UMC 0.13μm CMOS工艺,设计了电源电压为1V,工作频率范围为5~20GHz的1:2分频器电路.该电路由基本分频器单元以及输入输出缓冲组成.基本分频器单元采用单端动态负载锁存器.整体电路功耗...  相似文献   

6.
提出了一种新的相位开关实现技术 .基于这种技术设计了一个 2 / 3分频器单元 ,该单元结构简单 ,工作频率高 ,功耗低 .为了验证该技术 ,采用 0 .2 5μm CMOS数字工艺实现了一个 12 8/ 12 9双模预分频器 .对该芯片的测试结果表明其能正确工作于 GHz频率范围 .当工作频率为 2 .3GHz时 ,它消耗的电流仅为 13.5 m A(2 .5 V电源电压 ) ,芯片面积为 0 .4 7mm× 0 .4 7m m.  相似文献   

7.
给出基于0.13μm CMOS工艺、采用单时钟动态负载锁存器设计的四分频器.该四分频器由两级二分频器级联而成,级间采用缓冲电路实现隔离和电平匹配.后仿真结果表明其最高工作频率达37 GHz,分频范围为27 GHz.当电源电压为1.2 V、工作频率为37 GHz时,其功耗小于30 mW,芯片面积为0.33×0.28 mm2.  相似文献   

8.
给出基于0.13μmCMOS工艺、采用单时钟动态负载锁存器设计的四分频器。该四分频器由两级二分频器级联而成。级间采用缓冲电路实现隔离和电平匹配。后仿真结果表明其最高工作频率达37GHz,分频范围为27GHz。当电源电压为1.2V、工作频率为37GHz时,其功耗小于30mW,芯片面积为0.33-0.28mm2。  相似文献   

9.
管忻  冯军   《电子器件》2007,30(2)
采用CSM0.35μm CMOS工艺,设计了3.125Gbit/s4∶1复接器.系统采用树型结构,由两个并行的低速2∶1复接单元和一个高速2:1复接单元级联而成.低速单元采用带有电平恢复的传输管逻辑实现,高速单元采用动态传输门逻辑实现.具体电路由锁存器、选择器、分频器以及输入输出缓冲组成.复接器芯片面积为0.675mm×0.6mm.3.3V电源电压下,芯片整体功耗小于130mW,核心功耗是25mW.最高工作速率可达4Gbit/s.  相似文献   

10.
提出了一种应用新的电路结构和动态电路技术的双模预分频器,它已用0.25μm CMOS数字工艺实现.新的优化结构减少了电路的传输延迟,提高了电路速度.基于这种优化结构和动态电路技术,提出了改进的D型触发器.为了验证其功能,制作了一个试验型芯片.经测试,该分频器在可以工作于GHz频率范围;在电源电压为2.5V,输入频率为2.5GHz时,其功耗仅为35mW(包括三个功耗很大的输出缓冲器的功耗).由于其具有良好的性能,该分频器可应用于许多射频系统中.  相似文献   

11.
一种基于新的优化结构和动态电路技术CMOS双模预分频器   总被引:5,自引:4,他引:1  
提出了一种应用新的电路结构和动态电路技术的双模预分频器,它已用0.25μm CMOS数字工艺实现.新的优化结构减少了电路的传输延迟,提高了电路速度.基于这种优化结构和动态电路技术,提出了改进的D型触发器.为了验证其功能,制作了一个试验型芯片.经测试,该分频器在可以工作于GHz频率范围;在电源电压为2.5V,输入频率为2.5GHz时,其功耗仅为35mW(包括三个功耗很大的输出缓冲器的功耗).由于其具有良好的性能,该分频器可应用于许多射频系统中.  相似文献   

12.
采用0.18μm CMOS工艺设计并实现了1∶2静态分频器。设计中为达到高速率和高灵敏度,对传统的SCFL结构D触发器进行了拓扑及版图优化。测试结果表明,电源电压为1.8V时,该分频器最高工作频率高于10.5GHz,最低工作频率低于2.5MHz(受测试条件限制),输入信号0dBm时的工作频率范围为2.5MHz~9.4GHz,芯片核心功耗9mW,核心面积50μm×53μm。  相似文献   

13.
采用0.7μm InP DHBT工艺设计并实现了一款超宽带1∶8静态分频器芯片,内部分频采用电流模式逻辑结构实现,针对InP DHBT器件的高频特点对内部各电路进行了合理优化,实现了整个工作带宽内的宽输入功率范围和高输出信号平坦度。测试结果显示,正弦波输入时芯片可工作在0.2~45.0 GHz超宽带范围内,输入功率覆盖-10~+7 dBm,输出功率大于3.9 dBm,38 GHz输入时相位噪声优于-140 dBc/Hz,总功耗0.29 W。  相似文献   

14.
1V,19GHz CMOS分频器设计   总被引:6,自引:4,他引:2  
对传统分频器电路工作在低电压(1V)时存在的问题进行了分析,在此基础上提出了一种新的分频器电路结构,将NMOS和PMOS管的直流偏置电压分开,有效地解决了分频器在低电压下工作所存在的问题,采用0.18μm CMOS工艺参数进行仿真的结果表明,该分频器在1V的电源电压下,能够工作的最高输入频率为19GHz,功耗仅为2.5mW。  相似文献   

15.
舒海涌  李智群 《半导体学报》2010,31(5):055004-5
提出了一种2.4GHz ZigBee 应用的可编程分频器,其分频模值在2403-2480之间变化。该分频器基于双模分频器和吞咽计数器架构,功耗和面积得到了有效降低。芯片采用0.18-μm CMOS混合信号工艺实现,当输入信号达到7.5dBm时,分频器可正常工作的频率范围覆盖1-7.4 GHz,在100KHz频偏处的输出相位噪声为-125.3dBc/Hz。分频器核心电路消耗电流4.3mA(1.8V电源电压),核心面积0.015mm2。测试结果表明该可编程分频器能很好的应用在所需的频率综合器中.  相似文献   

16.
提出了一种新的相位开关实现技术.基于这种技术设计了一个2/3分频器单元,该单元结构简单,工作频率高,功耗低.为了验证该技术,采用0.25μm CMOS数字工艺实现了一个128/129双模预分频器.对该芯片的测试结果表明其能正确工作于GHz频率范围.当工作频率为2.3GHz时,它消耗的电流仅为13.5mA(2.5V电源电压),芯片面积为0.47mm×0.47mm.  相似文献   

17.
基于扩展的真单相时钟(E-TSPC)技术,设计了一款用于10 GHz扩频时钟发生器(SSCG)的分频比范围为32~63的多模分频器(MMD)。在设计中,基于D触发器的2/3分频器采用了动态E-TSPC技术,这不仅降低了功耗和芯片面积,而且改善了最高工作频率。MMD由5级2/3分频器级联而成,由5 bit数字码控制。详细介绍和讨论了2/3分频器和MMD的工作原理和优势。MMD是SSCG的一部分,采用55 nm CMOS工艺进行了流片,芯片面积为35μm×10μm,电源电压为1.2 V,最高工作频率为10 GHz,此时功耗为1.56 m W。  相似文献   

18.
介绍了一种可扩展分频比范围的射频可编程分频器,该电路包括输入放大器、前置2分频电路、4级除2/除3分频单元和15位可编程计数器。该分频器应用于频率合成器中,采用0.35μm BiCMOS工艺实现,电源电压3.3V,电源电流80mA。射频输入12GHz时灵敏度-10~10dBm。分频比从16到219-1可调。  相似文献   

19.
提出了一种新的基于数字FLL的高速、低功耗2.45GHz频率综合器结构,它由鉴频器、数字控制电路、电流控制振荡器组成.它采用高速鉴频器对振荡器输出信号计数实现鉴频,数字控制电路根据鉴频结果调节振荡器输出信号频率来实现输出信号频率与目标频率的锁定.高速分频器基于异步计数结构,降低了内部模块工作频率,使得系统性能稳定;数字控制电路采用逐次逼近算法,使得锁定速度快;基于差分电流饥饿延迟单元的电流控制振荡器采用电流-电容双控模式,使得输出频率调节范围宽、精度高.该电路结构简单,易于实现,版图面积为13 200μm2.在0.18μm工艺下,仿真结果显示,其锁定时间为14μs;输出频率调节范围为1~4.5GHz;输出频率锁定2.450GHz;功耗为4.622mW.  相似文献   

20.
对传统分频器电路工作在低电压(1V)时存在的问题进行了分析,在此基础上提出了一种新的分频器电路结构,将NMOS和PMOS管的直流偏置电压分开,有效地解决了分频器在低电压下工作所存在的问题.采用0.18μm CMOS工艺参数进行仿真的结果表明,该分频器在1V的电源电压下,能够工作的最高输入频率为19GHz,功耗仅为2.5mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号