首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用光致发光(PL)谱和傅里叶变换红外(FTIR)谱研究了掺铒a-SiOx∶H(a-SiOx∶H〈Er〉)薄膜在不同退火温度下光学性质和微观结构的变化.PL谱的测量结果表明:薄膜在1.54μm的Er3+发光和750nm处的可见发光随退火温度有相同的变化趋势,这种变化和薄膜在退火过程中微观结构的变化有着密切关系.FTIR谱的分析表明:a-SiOx∶H薄膜是一种两相结构,富硅相镶嵌在富氧相中.两者的成分可近似用a-SiOx≈0.3∶H和a-SiOx≈1.5∶H表示,前者性质接近于氢化非晶硅(a-Si∶H),后者性质接近于a-SiO2.富硅相在退火中的变化对Er3+的发光强度有重要影响.  相似文献   

2.
采用射频(RF)反应共溅射法制备了a-SiOxNy∶Er3+薄膜,在不同温度下进行退火处理,并测量了样品的可见及红外发光PL谱,观察到Er3+在550nm、525nm和1532nm的发光以及基质在620nm和720nm的发光.发现退火能明显增强Er3+的发光且对可见和红外发光的影响不同,讨论了退火明显增强Er3+发光及退火对可见和红外发光影响不同的机理.测量了Er3+可见发光的变温PL谱,讨论了退火对Er3+不同能级辐射跃迁几率的影响.根据基质发光随退火温度的变化,分析了基质发光峰的起源.  相似文献   

3.
采用射频 (RF)反应共溅射法制备了 a- Si Ox Ny∶ Er3+薄膜 ,在不同温度下进行退火处理 ,并测量了样品的可见及红外发光 PL谱 ,观察到 Er3+ 在 5 5 0 nm、5 2 5 nm和 15 32 nm的发光以及基质在 6 2 0 nm和 72 0 nm的发光 .发现退火能明显增强 Er3+ 的发光且对可见和红外发光的影响不同 ,讨论了退火明显增强 Er3+ 发光及退火对可见和红外发光影响不同的机理 .测量了 Er3+ 可见发光的变温 PL谱 ,讨论了退火对 Er3+ 不同能级辐射跃迁几率的影响 .根据基质发光随退火温度的变化 ,分析了基质发光峰的起源  相似文献   

4.
采用射频磁控反应溅射技术,以Er2O3和Si为靶材,制备了SiOx∶Er薄膜材料,在不同温度和不同时间下进行退火处理,室温下测量了样品的光致发光(PL)谱,观察到Er3+在1 530,1 542和1 555 nm处波长的发光,发现退火能明显增强Er3+的发光。研究了退火温度和时间对SiOx∶Er薄膜光致发光的影响,发现Er2O3与Si面积比为1∶1时,1 100℃下20 min退火为样品的最佳退火条件。采用XRD和材料光吸收测试对样品结构和光学性质进行了研究,得到样品中Si晶粒大小为1.6 nm,样品的光学带隙为1.56 eV。对3种不同Er2O3与Si面积比的SiOx∶Er薄膜材料进行研究,得到Er2O3与Si面积比为1∶3为样品的最佳配比,对薄膜材料发光现象进行了探讨。  相似文献   

5.
采用射频磁控反应溅射技术,以Er2O3和Si为靶材,制备了SiOx:Er薄膜材料,在不同温度和不同时间下进行退火处理,室温下测量了样品的光致发光(PL)谱,观察到Er3+在1 530,1 542和1 555 nm处波长的发光,发现退火能明显增强Er3+的发光.研究了退火温度和时间对SiOx:Er薄膜光致发光的影响,发现Er2O3与Si面积比为1∶1时,1 100℃下20 min退火为样品的最佳退火条件.采用XRD和材料光吸收测试对样品结构和光学性质进行了研究,得到样品中Si晶粒大小为1.6 nm,样品的光学带隙为1.56 eV.对3种不同Er2O3与Si面积比的SiOx:Er薄膜材料进行研究,得到Er2O3与Si面积比为1∶3为样品的最佳配比,对薄膜材料发光现象进行了探讨.  相似文献   

6.
退火对富硅氮化硅薄膜的结构和发光的影响   总被引:7,自引:3,他引:4  
采用等离子体增强化学气相沉积方法(PECVD),在低衬底温度下制备了富硅氮化硅薄膜。利用红外吸收谱(IR)、XPS光电子能谱和光致发光谱(PL),研究了不同的退火温度对薄膜结构和发光的影响。研究发现,薄膜经退火后,在发光谱中出现一强的发光峰。当经过900℃退火后,随着与硅悬键有关的发光峰的消失.该强的主发光峰发生了明显的蓝移,并且有所宽化。蓝移现象源于高温退火后,在薄膜中有小尺寸的Si团簇形成。通过实验结果分析,提出薄膜的发光起因于包埋在氮化硅中的Si团簇。  相似文献   

7.
采用PECVD技术在P型硅衬底上制备了a-SiOx:H/a-SiOy:H多层薄膜,利用AES和TEM技术研究了这种薄膜微结构的退火行为.结果表明:a-SiOx:H/a-SiOy:H多层薄膜经退火处理形成nc-Si/SiO2多层量子点复合膜,膜层具有清晰完整的结构界面.纳米硅嵌埋颗粒呈多晶结构,颗粒大小随退火温度升高而增大.在一定的实验条件下,样品在650℃下退火可形成尺寸大小合适的纳米硅颗粒.初步分析了这种多层复合膜形成的机理.  相似文献   

8.
富硅氮化硅薄膜的制备及其发光特性   总被引:2,自引:0,他引:2  
采用射频磁控反应溅射法制备了氮化硅薄膜.利用X射线衍射谱(XRD)、红外光谱(IR)、能谱(EDS)和光致发光谱(PL),通过与氮气中和空气中退火薄膜比较,对原沉积薄膜进行了成分与结构和发光特性研究.研究发现原沉积薄膜是部分晶化的富硅氮化硅薄膜,薄膜中晶态氮化硅颗粒的平均粒径为33 nm;在氮气中退火后,纳米颗粒增大;在空气中退火后,薄膜被氧化,晶态颗粒消失.在4.67 eV的光激发下,原沉积薄膜中观测到7个强的PL峰,其峰位分别为3.39,3.24,3.05,2.82,2.61,2.37和2.11 eV.在氮气和空气中退火后, PL峰位和强度有变化.对其光致发光机制进行了探讨, 认为硅悬挂键≡Si,氮悬挂键=N,硅错键≡Si-Si≡以及与氧有关的缺陷在富硅氮化硅薄膜高强度荧光发射中起主导作用.  相似文献   

9.
用磁控溅射法在n+-Si衬底上淀积掺铒的富硅氧化硅(SiO2∶Si∶Er)薄膜,并制备了Au/SiO2∶Si∶Er/n+-Si发光二极管,观测到这种发光二极管的1.54μm电致发光强度是在掺铒二氧化硅薄膜上以同样方法制备的Au/SiO2∶Er/n+-Si发光二极管的8倍.在n+-Si衬底上淀积了纳米(SiO2∶Er/Si/SiO2∶Er)三明治结构,其硅层厚度以0.2 nm为间隔从1.0nm变化到4.0nm.在室温下观察到了Au/纳米(SiO2∶Er/Si/SiO2∶Er)/n+-Si发光二极管的电致发光,其电致发光谱可分解成峰位和半高宽都固定的3个高斯峰,峰位分别为0.757eV(1.64μm)、0.806eV(1.54μm)和0.860eV(1.44μm),半高宽分别为0.052、0.045和0.055eV,其中1.54μm峰来源于Er3+发光.当硅层厚度为1.6nm时,3个峰的强度都达到最大,分别是没有硅层的Au/SiO2∶Er/n+-Si发光二极管相应3个峰的22、7.9和6.7倍.  相似文献   

10.
纳米硅镶嵌氮化硅薄膜的制备与光致发光特性   总被引:1,自引:0,他引:1  
为研究氮化硅薄膜发光材料的制备工艺及其光致发光机制,实验采用射频磁控反应溅射技术与热退火处理制备了纳米硅镶嵌氮化硅薄膜材料.利用红外光谱(IR)、X射线衍射谱(XRD)、能谱(EDS)和光致发光谱(PL),对不同工艺条件下薄膜样品的成分、结构和发光特性进行研究,发现在制备的富硅氮化硅薄膜材料中形成了纳米硅颗粒,并计算出其平均尺寸.在510 nm光激发下,观察到纳米硅发光峰,对样品发光机制进行了讨论,认为其较强的发光起因于缺陷态和纳米硅发光.  相似文献   

11.
研究了离子注入掺铒富硅氧化硅材料的光致发光和发光强度随退火温度的变化.在实验中发现,材料在1.54 μm处的发光波形与发光强度均与退火温度有关.在1100℃退火条件,材料形成较好的硅纳米晶,提高了Er的激发和发光效率.在T>100K时,Er发光的温度淬灭与非晶硅的含量有关,1100℃退火样品的温度淬灭效应比较小.  相似文献   

12.
采用在等离子体增强化学气相沉积(PECVD)系统中淀积a-Si∶H薄膜结合原位等离子体氧化的技术,制备了一系列不同a-Si∶H子层厚度的a-Si∶H/SiO2多层膜. 通过对其进行三步热处理:脱氢、快速热退火及准静态退火,使a-Si∶H/SiO2多层膜中a-Si∶H层发生非晶态到晶态的相变,获得尺寸可控的纳米硅nc-Si/SiO2多层膜. 结合Raman谱,FTIR谱和TEM测试,对退火过程中多层膜的光致发光性质进行跟踪研究,分析了a-Si∶H/SiO2多层膜在各个热处理阶段发光机理的演变,讨论了a-Si∶H/SiO2多层膜晶化为nc-Si/SiO2多层膜过程中,发光机制与微结构之间的相互联系.  相似文献   

13.
采用射频磁控溅射技术制备出掺Al的富Si/SiO2复合薄膜,以不同退火温度对样品进行热处理.对样品进行X射线衍射(XRD)、X射线光电子能谱(XPS)、红外吸收光谱(FTIR)、光致发光(PL)和光致发光激发谱(PLE)检测.结果表明SiO2薄膜中存在纳米Si晶粒,并且含有AlOx成分.室温下,可以观察到位于3.24~3.42 eV的较强紫外光致发光,其发光强度随退火温度和Al含量的变化而变化.分析表明该发光带与SiO2中的氧空位缺陷有关,缺陷分布与纳米Si的形成以及不同Al含量的氧化有关,从而影响薄膜发光强度.  相似文献   

14.
采用真空热蒸发与PECVD方法,在经特殊设计的"单反应室双沉积"设备中沉积了Al/a-Si∶H复合薄膜,并利用扫描电子显微镜、X射线衍射、Raman及X射线光电子谱等方法对复合薄膜在不同Al层厚度和不同温度退火后的晶化及电导行为进行了研究.结果表明,Al/a-Si∶H复合薄膜在不高于250℃的退火条件下即开始出现硅的晶体相.退火温度越高,Al层越厚,形成多晶硅的量越多.Al/a-Si∶H复合薄膜的电导率受Al原子在a-Si∶H中掺杂效应的影响,比纯a-Si∶H薄膜的大.随着硅晶体相在复合薄膜中的生成,复合薄膜的电导率受晶相比控制,晶相比增加,电导率增大.  相似文献   

15.
采用真空热蒸发与PECVD方法,在经特殊设计的"单反应室双沉积"设备中沉积了Al/a-Si∶H复合薄膜,并利用扫描电子显微镜、X射线衍射、Raman及X射线光电子谱等方法对复合薄膜在不同Al层厚度和不同温度退火后的晶化及电导行为进行了研究.结果表明,Al/a-Si∶H复合薄膜在不高于250℃的退火条件下即开始出现硅的晶体相.退火温度越高,Al层越厚,形成多晶硅的量越多.Al/a-Si∶H复合薄膜的电导率受Al原子在a-Si∶H中掺杂效应的影响,比纯a-Si∶H薄膜的大.随着硅晶体相在复合薄膜中的生成,复合薄膜的电导率受晶相比控制,晶相比增加,电导率增大.  相似文献   

16.
以磁控溅射方法于p-Si上淀积富硅二氧化硅,形成富硅二氧化硅/p-Si结构,用金刚刀在其正面刻划出方形网格后在N2气氛中退火,其光致发光(PL)谱与未刻划的经同样条件退火的对比样品的PL谱有很大不同.未刻划样品的PL谱只有一个峰,位于840nm(1.48eV),而刻划样品的PL谱是双峰结构,峰位分别位于630nm(1.97eV)和840nm.800℃退火的刻划富硅二氧化硅/p-Si样品在背面蒸铝制成欧姆接触和正面蒸上半透明金电极后在正向偏压10V下的电致发光(EL)强度约为同样制备的未经刻划样品在同样测试条件下的EL强度的6倍.EL谱形状也有明显不同,表现在:未经刻划样品的EL谱可以分解为两个高斯峰,峰位分别位于1.83eV和2.23eV;而在刻划样品EL谱中1.83eV发光峰大幅度增强,还产生了一个新的能量为3.0eV的发光峰.认为刻划造成的高密度缺陷区为氧化硅提供了新的发光中心并对其中某些杂质起了吸除作用,导致PL和EL光谱改变.  相似文献   

17.
在 n+ -Si衬底上用磁控溅射淀积掺 Er氧化硅 (Si O2 :Er)薄膜和掺 Er富硅氧化硅 (Six O2 :Er,x>1 )薄膜 ,薄膜经适当温度退火后 ,蒸上电极 ,形成发光二极管 (LED)。室温下在大于 4V反偏电压下发射了来自 Er3+的 1 .5 4μm波长的红外光。测量了由 Si O2 :Er/n+ -Si样品和 Six O2 :Er/n+ -Si样品分别制成的两种 LED,其 Er3+1 .5 4μm波长的电致发光峰强度 ,后者明显比前者强。还发现电致发光强度与 Si O2 :Er/n+ -Si样品和 Six O2 :Er/n+ -Si样品的退火温度有一定依赖关系  相似文献   

18.
用脉冲ArF准分子激光熔蚀SiC陶瓷靶,在800C Si(100)衬底上淀积SiC薄膜,经不同温度真空(10-3Pa)退火后,用FTIR、XRD、TEM、XPS、PL谱等分析方法,研究了薄膜最佳晶化温度及表面形态、结构、组成,并对在最佳退火温度处理后的样品进行了化学态、微结构及光致发光的研究.结果表明,在Si(100)上800C淀积的样品为非晶SiC薄膜.经850-1050C不同温度真空退火后,SiC薄膜经非晶核化-长大过程,在980C完成最佳晶化.随退火温度的变化,薄膜中可能存在3C-SiC与6H-SiC的竞争生长或/和3C-SiC相的长、消(最佳温度退火样品中6H-SiC和3C-SiC两种晶相共存).以370nm波长光激发样品薄膜表面,显示较强的447nm蓝光发射,其发光机制可能是空位缺陷及其它晶格缺陷形成的浅施主能级向价带的电子辐射复合跃迁.  相似文献   

19.
采用脉冲激光沉积制备了掺铒Al2O3/Si多层薄膜,在淀积过程中脉冲激光溅射产生的高能量Er原子渗透进入非晶硅层,并引入了额外的应力,在低退火温度下诱导形成纳米晶Si。利用纳米晶Si作为敏化剂有效地增强了Er3+在Al2O3中的光致发光。样品微观结构和发光强度的关系表明,获得高密度和小尺寸的纳米晶Si和Er3+处于良好的发光环境是实现优化发光的关键,最优化的Er3+发光强度在退火温度为600℃的条件下得到。  相似文献   

20.
富硅量不同的富硅氮化硅薄膜的光致发光研究   总被引:6,自引:1,他引:5  
采用等离子体增强化学气相沉积方法(PECVD),在低衬底温度下制备了系列富硅量不同的富硅氮化硅薄膜。且所有样品分别经过不同温度的退火。通过X射线光电子能谱(XPS)的测试证实了薄膜中硅团簇的存在。对不同富硅量的氮化硅薄膜做了红外和光致发光的比较研究。由不同富硅量薄膜中硅团簇的尺寸变化对发光峰的影响。得出了发光来源于包埋于氮化硅薄膜中由于量子限制效应而使带隙增大了的硅团簇。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号