首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
卢宇潇  孙麓  李哲  周健军 《半导体学报》2014,35(4):045009-8
This paper demonstrates a single-channel 10-bit 160 MS/s successive-approximation-register (SAR) analog-to-digital converter (ADC) in 65 nm CMOS process with a 1.2 V supply voltage. To achieve high speed, a new window-opening logic based on the asynchronous SAR algorithm is proposed to minimize the logic delay, and a partial set-and-down DAC with binary redundancy bits is presented to reduce the dynamic comparator offset and accelerate the DAC settling. Besides, a new bootstrapped switch with a pre-charge phase is adopted in the track and hold circuits to increase speed and reduce area. The presented ADC achieves 52.9 dB signal-to-noise distortion ratio and 65 dB spurious-free dynamic range measured with a 30 MHz input signal at 160 MHz clock. The power consumption is 9.5 mW and a core die area of 250 ×200 μm^2 is occupied.  相似文献   

2.
A high switching frequency voltage-mode buck converter with fast voltage-tracking speed and wide output voltage range has been proposed. A novel error amplifier (EA) is presented to achieve a high DC gain and get high phase margin, including a resistor and capacitor net, a unit gain block and a high gain block. The investigated converter has been fabricated with GF 0.35 μm CMOS process and can operate at 6 MHz with the output voltage range from 0.6 to 3.4 V. The experimental results show that the voltage-tracking speed can achieve 8.8 μs/V for up-tracking and 6 μs/V for down-tracking. Besides, the recovery time is less than 8 μs while the load current suddenly changes 400 mA.  相似文献   

3.
陈怡  李福乐  陈虹  张春  王志华 《半导体学报》2009,30(8):085009-6
This paper presents a low power cyclic analog-to-digital convertor (ADC) design for a wireless monitoring system for orthopedic implants. A two-stage cyclic structure including a single to differential converter, two multiplying DAC functional blocks (MDACs) and some comparators is adopted, which brings moderate speed and moderate resolution with low power consumption. The MDAC is implemented with the common switched capacitor method. The 1.5-bit stage greatly simplifies the design of the comparator. The operational amplifier is carefully op- timized both in schematic and layout for low power and offset. The prototype chip has been fabricated in a United Microelectronics Corporation (UMC) 0.18-μm 1P6M CMOS process. The core of the ADC occupies only 0.12 mm2. With a 304.7-Hz input and 4-kHz sampling rate, the measured peak SNDR and SFDR are 47.1 dB and 57.8 dBc respectively and its DNL and INL are 0.27 LSB and 0.3 LSB, respectively. The power consumption of the ADC is only 12.5 μW in normal working mode and less than 150 nW in sleep mode.  相似文献   

4.
唐凯  孟桥  王志功  郭婷 《半导体学报》2014,35(5):055002-6
A low power 20 GHz CMOS dynamic latched regeneration comparator for ultra-high-speed, low-power analog-to-digital converters (ADCs) is proposed. The time constant in both the tracking and regeneration phases of the latch are analyzed based on the small signal model. A dynamic source-common logic (SCL) topology is adopted in the master-slave latch to increase the tracking and regeneration speeds. Implemented in 90 nm CMOS technology, this comparator only occupies a die area of 65 × 150 μm^2 with a power dissipation of 14 mW from a 1.2 V power supply. The measurement results show that the comparator can work up to 20 GHz. Operating with an input frequency of 1 GHz, the circuit can oversample up to 20 Giga-sampling-per-second (GSps) with 5 bits resolution; while operating at Nyquist, the comparator can sample up to 20 GSps with 4 bits resolution. The comparator has been successfully used in a 20 GSps flash ADC and the circuit can be also used in other high speed applications.  相似文献   

5.
A novel low-offset dynamic comparator for high-speed low-voltage analog-to-digital converters (ADCs) has been proposed.In the proposed comparator,a CMOS switch takes the place of the dynamic current sources in the differential comparator,which allows the differential input transistors still to operate in the saturation region at the comparing time.This gives the proposed comparator a low offset as the differential comparator while tolerating a sub-1-V supply voltage.Additionally,it also features a larger input swing,less sensitivity to common mode voltage,and a simple relationship between the input and reference voltage.This proposed comparator with two traditional comparators has been realized by SMIC 0.13μm CMOS technology.The contrast experimental results verify these advantages over conventional comparators.It has been used in a 12-bit 100-MS/s pipeline ADC.  相似文献   

6.
A dynamic range extension scheme applied to a time delay integration (TDI) CMOS image sensor (CIS) is presented. Two types of pixels with higher and lower conversion gain are adopted in the pixel array, which are suitable for capturing images in low and high illumination respectively. By fusing the two kinds of pixels' output signals in the process of TDI accumulation, a high dynamic range image can be achieved. Compared with the traditional multiple integration technique, no photoelectrons generated during the exposure time are discarded by the reset operation, and thus a higher level of signal-to-noise ratio (SNR) can be retained. A prototype chip with an 8 × 8 pixel array is implemented in a 0.18 μm CIS process, and the pixel size is 15 × 15 μm2. Test results show that a 76 dB dynamic range can be achieved in 8-stage TDI mode, when the SNR boost can reach 7.26 dB at 90.8 lux.  相似文献   

7.
The design of a new type of latching voltage comparator ZJ03 is described.Thecommon voltage comparators consist of multistage DC amplifiers,for which it is difficult to realizehigh speed and high precision.The ZJ03 comparator contains a controlled positive feedbackamplifier.Therefore,it is capable of realizing high speed and high precision.For improving theperformance and producibility,the tolerance extension,design centering and potential adaptingtechniques are used in the design of comparator ZJ03.  相似文献   

8.
A low reset noise CMOS image sensor(CIS) based on column-level feedback reset is proposed.A feedback loop was formed through an amplifier and a switch.A prototype CMOS image sensor was developed with a 0.18μm CIS process.Through matching the noise bandwidth and the bandwidth of the amplifier,with the falling time period of the reset impulse 6μs,experimental results show the reset noise level can experience up to 25 dB reduction.The proposed CMOS image sensor meets the demand of applications in high speed security surveillance systems,especially in low illumination.  相似文献   

9.
A high stability in-circuit reprogrammable technique control system for a capacitive MEMS accelerometer is presented. Modulation and demodulation are used to separate the signal from the low frequency noise. A low-noise low-offset charge integrator is employed in this circuit to implement a capacitance-to-voltage converter and minimize the noise and offset. The application-specific integrated circuit (ASIC) is fabricated in a 0.5 /μm one-ploy three-metal CMOS process. The measured results of the proposed circuit show that the noise floor of the ASIC is -116 dBV, the sensitivity of the accelerometer is 66 mV/g with a nonlinearity of 0.5%. The chip occupies 3.5×2.5 mm2 and the current is 3.5 mA.  相似文献   

10.
With the progress of the railway technology, the railway transportation is becoming more efficient, intelligent and faster. High speed trains, as a major part of the railway transportation, are engaged with passenger's safety, and therefore the reliability issue is very important in such vital systems. In this paper, a dependable speed controller core based on FPGA has been developed for high speed trains. To improve the reliability and mitigate single upset faults on basic speed controller, this paper proposes a new effective method which is based on hardware redundancy. In the proposed Hybrid Dual Duplex Redundancy (HDDR) method, the original controller is quadruplicated and correct values are voted through the comparator and error detection unit. We have analyzed the proposed system with Reliability, Availability, Mean time to failure and Security (RAMS) theory in order to evaluate the effectiveness of proposed scheme. Theoretical analysis shows that the Mean Time To Failure (MTTF) of the proposed system is 2.5 times better than the traditional Triple Modular Redundancy (TMR). Furthermore, the fault injection experimental results reveal that the capability of tolerating Single Event Upsets (SEUs) in the proposed method increases up to 7.5 times with respect to a regular speed controller.  相似文献   

11.
吴晨健  李智群  孙戈 《半导体学报》2014,35(4):045006-5
This paper presents an up-conversion mixer for 2.4-2.4835 GHz wireless sensor networks (WSN) in 0.18 μm RF CMOS technology. It was based on a double-balanced Gilbert cell type, with two Gilbert cells having quadrature modulation applied. Current-reuse and cross positive feedback techniques were applied in the mixer to boost conversion gain; the current source stage was removed from the mixer to improve linearity. Measured results exhibited that under a 1 V power supply, the conversion gain was 5 dB, the input referred 1 dB compression point was -11 dBm and the IIP3 was -0.75 dBm, while it only consumed 1.4 mW.  相似文献   

12.
A low power high gain gain-controlled LNA + mixer for GNSS receivers is reported. The high gain LNA is realized with a current source load. Its gain-controlled ability is achieved using a programmable bias circuit. Taking advantage of the high gain LNA, a high noise figure passive mixer is adopted. With the passive mixer, low power consumption and high voltage gain of the LNA + mixer are achieved. To fully investigate the performance of this circuit, comparisons between a conventional LNA + mixer, a previous low power LNA + mixer, and the proposed LNA + mixer are presented. The circuit is implemented in 0.18 #m mixed-signal CMOS technology. A 3.8 dB noise figure, an overall 45 dB converge gain and a 10 dB controlled gain range of the two stages are measured. The chip occupies 0.24 mm2 and consumes 2 mA current under 1.8 V supply.  相似文献   

13.
This paper presents a capacitor-free CMOS low dropout voltage regulator which has high PSR perfor- mance and low chip area. Pole splitting and gm boosting techniques are employed to achieve good stability. The capacitor-free chip LDO was fabricated in commercial 0.18μm CMOS technology provided by GSMC (Shanghai, China). Measured results show that the capacitor-free LDO has a stable output voltage 1.79 V, when supply voltage changes from 2.5 to 5 V, and the LDO is capable of driving maximum 100 mA load current. The LDO has high power supply rejection about -79 dB at low frequency and -40 dB at 1 MHz frequency, while sacrifice of the LDO's active chip-area is only smaller than 0.02 mm2.  相似文献   

14.
The mechanism of the FA/O chelating agent in the process of chemical mechanical polishing (CMP) is introduced. CMP is carried on a φ300 mm copper film. The higher polishing rate and lower surface roughness are acquired due to the action of an FA/O chelating agent with an extremely strong chelating ability under the condition of low pressure and low abrasive concentration during the CMP process. According to the results of several kinds of additive interaction curves when the pressure is 13.78 kPa, flow rate is 150 mL/min, and the rotating speed is 55/60 rpm, it can be demonstrated that the FA/O chelating agent plays important role during the CMP process.  相似文献   

15.
This paper presents a wideband RF front-end with novel current-reuse wide band low noise amplifier(LNA),current-reuse V –I converter,active double balanced mixer and transimpedance amplifier for short range device(SRD) applications.With the proposed current-reuse LNA,the DC consumption of the front-end reduces considerably while maintaining sufficient performance needed by SRD devices.The RF front-end was fabricated in 0.18 μm RFCMOS process and occupies a silicon area of just 0.11 mm2.Operating in 433 MHz band,the measurement results show the RF front-end achieves a conversion gain of 29.7 dB,a double side band noise figure of 9.7 dB,an input referenced third intercept point of –24.9 dBm with only 1.44 mA power consumption from 1.8 V supply.Compared to other reported front-ends,it has an advantage in power consumption.  相似文献   

16.
To achieve low threshold current as well as high single mode output power, a graded index separate confinement heterostructure (GRIN-SCH) A1GaInAs/A1GaAs quantum well laser with an optimized ridge wave- guide was fabricated. The threshold current was reduced to 8 mA. An output power of 76 mW was achieved at 100 mA current at room temperature, with a slope efficiency of 0.83 W/A and a horizon divergent angle of 6.3°. The maximum single mode output power of the device reached as high as 450 mW.  相似文献   

17.
This paper presents a 2.4 GHz CMOS transceiver for the wireless personal area network (WPAN) inte- grated in 0.18/zm CMOS technology. This transceiver adopts a low-IF receiver, a MUX based transmitter and a fast-setting fractional-N frequency synthesizer. For achieving low cost and low power consumption, an inductor- less receiver front-end, an adaptive analog baseband, a low power MUX and a current-reused phase-locked loop (PLL) have been proposed in this work. Measured results show that the receiver achieves-8 dBrn of lIP3 and 31 dB of image rejection. The transmitter delivers 0 dBm output power at a data rate of 2 Mbps. The current consumption is 7.2 mA in the receiving mode and 6.9 mA in the transmitting mode, respectively.  相似文献   

18.
A low phase noise and low spur phase locked loop (PLL) frequency synthesizer for use in global navigation satellite system (GNSS) receivers is proposed. To get a low spur, the symmetrical structure of the phase frequency detector (PFD) produces four control signals, which can reach the charge pump (CP) simultaneously, and an improved CP is realized to minimize the charge sharing and the charge injection and make the current matched. Additionally, the delay is controllable owing to the programmable PFD, so the dead zone of the CP can be eliminated. The output frequency of the VCO can be adjusted continuously and precisely by using a programmable LC-TANK. The phase noise of the VCO is lowered by using appropriate MOS sizes. The proposed PLL frequency synthesizer is fabricated in a 0.18 μm mixed-signal CMOS process. The measured phase noise at 1 MHz offset from the center frequency is -127.65 dBc/Hz and the reference spur is -73.58 dBc.  相似文献   

19.
This paper presents the design of an ultralow power receiver front-end designed for a wireless sensor network (WSN) in a 0.18 μm CMOS process. The author designs two front-ends working in the saturation region and the subthreshold region respectively. The front-ends contain a two-stage cross-coupling cascaded common-gate (CG) LNA and a quadrature Gilbert IQ mixer. The measured conversion gain is variable with high gain at 24 dB and low gain at 7 dB for the saturation one, and high gain at 22 dB and low gain at 5 dB for the subthreshold one. The noise figure (NF) at high gain mode is 5.1 dB and 6.3 dB for each. The input 1 dB compression point (IPldB) at low gain mode is about -6 dBm and -3 dBm for each. The front-ends consume about 2.1 mA current from 1.8 V power supply for the saturation one and 1.3 mA current for the subthreshold one. The measured results show that, comparing with the power consumption saving, it is worth making sacrifices on the performance for using the subthreshold technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号