首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用耐高温α-淀粉酶能将底物同步糊化和液化的特性,通过单因素和正交试验对耐高温α-淀粉酶水解荞麦淀粉的动力学参数和最适反应条件进行了测定.结果表明:耐高温α-淀粉酶的最适温度为80~85℃,最适pH为5.0~6.5;该酶水解荞麦淀粉的Km为4.9674mg/mL,Vm为0.3448mg/(mL·min);该酶水解荞麦淀粉的优化工艺条件为荞麦淀粉浆浓度25%,温度为83℃,pH6.5,酶用量40U/g,液化时间15min.荞麦淀粉液化液糖化后的DE值为89.87%.  相似文献   

2.
双酶协同酶解木薯淀粉的研究   总被引:4,自引:1,他引:3  
本文研究了α-淀粉酶(酶活:4,000 U/g,最适pH 5.5~6.5,最适温度50~55℃)和糖化酶(酶活:100,000 U/g,最适pH 4.0~4.5,最适温度58~62℃)协同水解制备木薯微孔淀粉的工艺条件.结果表明木薯淀粉的水解率为50%时质量最好,此时的工艺条件为:加酶量(α-淀粉酶与糖化酶的质量比为3:1)为干基淀粉质量的0.50%,反应时间12 h,反应温度55℃,反应pH 5.0.  相似文献   

3.
酸性α-淀粉酶生产菌株的筛选和酶的纯化及酶的性质研究   总被引:18,自引:0,他引:18  
陈波  李大力  杨树林 《食品科学》2005,26(5):119-122
从土壤中筛选得到一产酸性α-淀粉酶的野生青霉菌株,对其所产酸性α-淀粉酶进行分离纯化,该酶反应的最适pH值为4.4,最适温度为60℃,分子量约为85kD。薄层层析结果表明该酶水解淀粉生成糊精和多种低聚糖。  相似文献   

4.
板栗淀粉酶水解工艺条件研究   总被引:1,自引:0,他引:1  
为探索板栗淀粉酶水解特性及工艺条件,采用中温α-淀粉酶对板栗淀粉进行水解,并在水解温度、pH、底物浓度及酶用量等单因素试验的基础上进行二次回归正交旋转试验,确定板栗淀粉酶解工艺条件.结果表明:对α-淀粉酶水解板栗淀粉影响程度大小依次为pH>水解温度>酶用量>底物浓度;α-淀粉酶水解板栗淀粉的适宜工艺条件为:水解温度70.2 ℃,pH 5.83,底物浓度73.10 g/L,酶用量122.45 U/g,水解时间为75 min.在此工艺条件下板栗淀粉酶水解度为27.476% .  相似文献   

5.
从嗜热真菌樟绒枝霉(Malbranchea cinnamomea)中克隆α-淀粉酶基因McAmyA,并在毕赤酵母GS115中高效表达,经高密度发酵至168 h时,胞外酶活力达到13 440. 6 U/mL。重组α-淀粉酶McAmyA粗酶液经QSFF强阴离子交换层析纯化得到电泳级纯酶,比酶活力为1 230. 2 U/mg。酶学性质研究表明,重组α-淀粉酶McAmyA的最适pH和最适温度分别是6. 5和65℃。以淀粉液化液为底物,在温度60℃,加酶量120 U/g,水解24 h的条件下,重组α-淀粉酶McAmyA水解液化液,制备得到麦芽糖含量为50. 0%(质量分数)的麦芽糖浆。该真菌α-淀粉酶在毕赤酵母中表达水平高,具有很大的应用潜力。  相似文献   

6.
用PCR方法扩增扣囊复膜孢酵母CICIM Y1037菌株真菌α-淀粉酶基因成熟肽编码区(SfA),插入表达载体pPIC9K。重组质粒pPIC9K-SfA转化巴斯德毕赤酵母GS115,筛选获得淀粉酶活力相对最高的重组菌Pichia pastoris GS115/pPIC9K-SfAmy LZ08。SDS-PAGE电泳分析纯化获得的重组酶SfA,结果显示重组酶分子质量为61 kDa左右。SfA最适反应温度为45℃、最适pH为4.5,是一种酸性α-淀粉酶。Ca2+对SfA的热稳定性有促进作用,重组酶在含5 mmol/L Ca2+,pH 4.5的溶液中,55℃保温4 h酶活仍保留80%以上。SfA水解玉米淀粉获得麦芽寡糖和少量葡萄糖,其中麦芽糖和麦芽三糖为主要产物,分别占水解物的37%和39%。重组酶SfA在麦芽三糖和麦芽寡糖糖浆生产中有一定的应用潜力。  相似文献   

7.
为探索板栗淀粉酶水解特性及工艺条件,试验采用中温α-淀粉酶时板栗淀粉进行水解,并在水解温度、pH、底物浓度及酶用量等单因素试验的基础上进行了二次回归正交旋转试验,确定了板栗淀粉酶水解工艺条件.结果表明:对α-淀粉酶水解板栗淀粉影响程度大小依次为pH>水解温度>酶用量>底物浓度;α-淀粉酶水解板栗淀粉的适宜工艺条件为:水解温度70.2℃、pH 5.83、底物浓度73.10g/L、酶用量122.45U/g、水解时间75min,在此工艺条件下板栗淀粉酶水解度为27.476%.  相似文献   

8.
以壳聚糖为唯一碳源,结合固态培养基发酵培养,从自然界中筛选得到一株产复合酶的菌株,初步鉴定为曲霉属.该菌产复合酶中以壳聚糖酶、纤维素酶和α-淀粉酶为主,它们的酶活分别为2.206、0.790、3.229U/mL.该复合酶降解壳聚糖的最适温度为50℃,最适pH为5.6,最适时间为4h.通过有机溶剂分级沉淀,发现该复合酶降解壳聚糖的最终产物以聚合度为8~16的壳寡糖为主,表明该复合酶在壳寡糖制备方面具有一定的应用价值.  相似文献   

9.
中空球形壳聚糖经3%戊二醛活化后与真菌α-淀粉酶在室温反应2h,冰箱静置过夜,制备固定化α-淀粉酶.固定化α-淀粉酶最适催化温度为60℃,最适pH值为5.0,相对酶活力为7.4%.固定化α-淀粉酶连续使用15d,酶活力未下降,生产麦胚蛋白质的纯度达89%,得率为79%.  相似文献   

10.
用α-淀粉酶和β-淀粉酶对米粉进行酶法水解,以还原糖含量为指标,采用响应面分析法得到大米粉的最佳酶解工艺:α-淀粉酶添加量为0.5μg/g,β-淀粉酶添加量为0.9 μg/g,酶解温度58.5℃,pH5.5,酶水解时间为2.5h.在此条件下,大米粉的酶解程度最高,DE值为49.77%,经过酶解后大米粉颗粒直径由20.63 μm降低到8.54 μm.  相似文献   

11.
以蒙脱石为载体,利用吸附法分别固定α-淀粉酶、糖化酶以及共固定化α-淀粉酶和糖化酶。α-淀粉酶和糖化酶最佳固定化温度分别是20℃和30℃,最佳固定化pH是6.5和4.5。共固定化最佳条件为淀粉酶(U):糖化酶(U):蒙脱石(g)为15:7.5:0.2,pH为5.5;温度为20℃。固定化α-淀粉酶、固定化糖化酶和共固定化酶的最适pH分别为6.0、4.5和5.5,最适反应温度分别是60、60℃和55℃。蒙脱石固定化α-淀粉酶、固定化糖化酶和共固定化酶的稳定性均较好,尤其是共固定化酶表现突出。  相似文献   

12.
高温短小芽孢杆菌及其产高温淀粉酶的初步研究   总被引:1,自引:0,他引:1  
从云南腾冲热海热泉中分离出一株产高温淀粉酶的菌株,命名为Tamy12。该菌株生长温度范围为37~70℃,最适生长温度为55℃。对菌株进行16SrRNA基因序列分析表明,该菌株为短小芽孢杆菌(Bacillus pumilussp·)。对该菌所产淀粉酶性质的初步研究表明:该酶在80℃具有最高催化活性,在98℃保温30min,仍剩余30%的活力;其最适反应pH为5·0。通过Native-PAGE分析表明菌株Tamy12的粗酶液只含有单一条带的淀粉酶。通过TLC(薄层层析)分析该酶水解淀粉的产物表明,其产物主要为葡萄糖、麦芽糖及3~5个葡萄糖基的寡糖,初步确定菌株所产的淀粉酶为高温α-淀粉酶。  相似文献   

13.
作者研究了泡盛曲霉(Aspergillus awamori)一种β-1,3-1,4-葡聚糖酶(AaBglu29)的纯化、性质及其水解燕麦麸皮制备葡寡糖。粗酶液采用硫酸铵沉淀、QSFF强阴离子柱和DEAE-52弱阴离子柱层析3步纯化,得到电泳级纯酶,经SDS-PAGE和Sephacryl-100测定的相对分子质量分别为30.7×10~3和27.6×10~3。该酶最适pH为5.0,最适温度为55℃。AaBglu29底物特异性专一,对大麦葡聚糖、燕麦葡聚糖和地衣多糖的比酶活力分别为9 500、7 950 U/mg和5 980 U/mg。该酶水解燕麦麸皮产生葡三糖和葡四糖,经优化,当底物质量分数为5%,加酶量为100 U/g时,于50℃、pH 5.0条件下水解4 h,葡寡糖转化率可达90%。AaBglu29优良的酶学特性使其在食品和饲料工业具有较大的应用潜力。  相似文献   

14.
以玉米黄粉为原料,利用α-淀粉酶和纤维素酶进行预处理去除淀粉、纤维素杂质,通过单因素法和正交试验对预处理工艺条件进行优化,以蛋白质回收率为考察指标确定最佳水解工艺。预处理后所得的玉米浓缩蛋白粉用8%的亚硫酸钠热变性处理,利用四种不同蛋白酶对玉米蛋白进行水解,以玉米蛋白水解度、溶解度、发泡高度和失水率为考察指标优选出水解玉米蛋白的蛋白酶种类,通过高效液相色谱分析玉米蛋白水解物的组成成分。结果表明,预处理的最适条件为:先用纤维素酶处理后用α-淀粉酶处理;纤维素酶最适温度50 ℃、pH5.0、酶用量1.0%、时间2.5 h、料水比1:3 g/mL;α-淀粉酶最适温度65 ℃、pH6.5、酶用量1.0%、水解时间0.5 h、料水比1:4 g/mL,此时蛋白质回收率为96.1%、蛋白质含量为89.9%。碱性蛋白酶为水解玉米蛋白最佳蛋白酶,此时玉米蛋白水解产物的水解度为14.2%,溶解度为68.6%,发泡高度为64 mm,失水率为16%。水解物中氨基酸含量为35.72%,多肽含量为64.28%。  相似文献   

15.
多孔淀粉是一种新型酶变性淀粉,本文采用α-淀粉酶和糖化酶复合酶解法制备多孔淀粉,对其工艺条件进行研究,当α-淀粉酶和糖化酶的比例为1:5、反应温度60℃,反应时间32h,pH4.5,酶用量2.0%时,可得到吸油率较高的多孔淀粉,可用于牡蛎水解液的进一步吸附。  相似文献   

16.
考察了纺织用α-淀粉酶的最适pH及最适温度,研究了多种金属离子、醇类、糖类以及不同分子质量的聚乙二醇对α-淀粉酶酶活力及热稳定性能的影响.结果表明,在金属离子中,K<'+>对提高酶的活力及热稳定效果最好;在醇类物质中,甘油和D-山梨醇的作用效果最好;在糖类物质中,葡萄糖和海藻糖效果最好;分子质量为200、400、600的聚乙二醇能提高α-淀粉酶的活力及热稳定性.与α-淀粉酶相比较,加入了氯化钾、甘油、D-山梨醇、葡萄糖、海藻糖的α-淀粉酶的最适温度从43.3℃提高到60℃,表明助剂能有效提高纺织用α-淀粉酶的热稳定性能.  相似文献   

17.
米曲霉40188产中性蛋白酶、α-淀粉酶特性的研究   总被引:5,自引:0,他引:5  
通过对米曲霉40188产酶特征及中性蛋白酶及α-淀粉酶酶学特征的研究,得出米曲霉40188制曲最佳时间为50~72 h,中性蛋白酶和α-淀粉酶酶活在40℃稳定,随着温度升高酶活降低,但α-淀粉酶的热稳定性较中性蛋白酶强,中性蛋白酶的最适pH为7~8,α-淀粉酶的最适pH为6~8,α-淀粉酶的耐盐性较中性蛋白酶强,中性蛋白酶酶活随着盐浓度的增加呈下降趋势。  相似文献   

18.
酸性α-淀粉酶菌株的诱变及酶的性质研究   总被引:3,自引:2,他引:3  
以醋醅中筛选出产α-淀粉酶的酵母菌为出发菌进行N 离子注入诱变,使产物酶活提高了219%,达到497U/g。对其所产-α淀粉酶进行分离纯化,实验表明,该酶的最适温度为60℃,最适pH值为4.0,分子量约为81kDa,Ca2 对该酶的激活作用不明显。薄层层析结果表明,该酶水解淀粉产物为糊精和多种低聚糖。  相似文献   

19.
双酶法水解茶树菇工艺的研究   总被引:1,自引:0,他引:1  
采用纤维素酶和木瓜蛋白酶的双酶水解技术对茶树菇进行水解,以α-氨基氮含量为指标,通过正交实验确定了最适水解条件为:纤维素酶:木瓜蛋白酶(0.15%)=1:1,水解温度60℃,水解时间240min,初始pH6.0,α-氨基氮含量可达0.38g/100g.  相似文献   

20.
磁性聚乙烯醇微球固定化α-淀粉酶的研究   总被引:5,自引:1,他引:5  
磁性聚乙烯醇微球为载体,采用戊二醛交联法固定化α-淀粉酶,并对固定化酶的理化性质等进行了研究。结果表明,磁性固定化α-淀粉酶的总活力、蛋白载量、比活、活性回收率分别为1107.89U/g微球、125.36mg/g微球、8.84U/mg蛋白质和37.96%;固定化α-淀粉酶的反应最适温度和最适pH分别为110℃和7.0;固定化α-淀粉酶对金属离子Mg2+、Fe2+、Zn2+和Cu2+的抑制作用的忍耐性比自由酶的明显提高;α-淀粉酶被固定化后其热稳定性、操作稳定性、pH稳定性均比自由酶的明显提高。固定化α-淀粉酶在4℃,pH7.0的缓冲液中保存30d,其活力仍保持最初活力的91.6%,这比其自由酶的高12.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号